Hostname: page-component-f554764f5-246sw Total loading time: 0 Render date: 2025-04-20T18:49:23.188Z Has data issue: false hasContentIssue false

A compact 12 × 12 MIMO loop antenna for 5G mobile phone applications

Published online by Cambridge University Press:  20 June 2023

Ji-Peng Jhuang
Affiliation:
Department of Computer Science and Information Engineering, National Pingtung University, Pingtung, Taiwan
Hsin-Lung Su*
Affiliation:
Department of Computer and Communication, National Pingtung University, Pingtung, Taiwan
*
Corresponding author: Hsin-Lung Su; Email: [email protected]

Abstract

A compact 12-element multiple-input multiple-output loop antenna array for a fifth-generation (5G) mobile phone is proposed. The operating band for the proposed antenna covers the long-term evolution 42 band, which spans a frequency range of 3.4–3.6 GHz. The size of the single antenna element is 5.85 × 4.9 mm2 (0.068λ0 × 0.057λ0), and 12 of these elements are positioned along two side edges of the mobile phone. This antenna is suitable for high screen-to-body ratio devices. The measured 6-dB impedance bandwidth is from 3.4 to 3.73 GHz. The measured total efficiency of the proposed antenna is 39–56% and the peak gain is 0–3.2 dBi. The transmission coefficient is less than −12 dB, the envelope correlation coefficient is less than 0.42, and the channel capacity is 45–50 bps/Hz.

Type
AntennaDesign, Modelling and Measurements
Copyright
© The Author(s), 2023. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Dubazane, SP, Kumar, P and Afullo, TJO (2022) Metasurface superstrate-based MIMO patch antennas with reduced mutual coupling for 5G communications. The Applied Computational Electromagnetics Society Journal (ACES) 37, 408419.Google Scholar
Dubazane, S, Kumar, P and Afullo, TJO (2021) Metasurface based MIMO microstrip antenna with reduced mutual coupling. In 2021 IEEE AFRICON, Arusha, United Republic of Tanzania, 17.Google Scholar
Parchin, NO, Al-Yasir, YIA, Abdulkhaleq, AM, Basherlou, HJ, Ullah, A and Abd-Alhameed, RA (2020) A new broadband MIMO antenna system for Sub 6 GHz 5G cellular communications. In 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 14.Google Scholar
Al-Bawri, S, Islam, M, Singh, M, Alyan, E, Jusoh, M, Sabapathy, T, Padmanathan, S and Hossain, K (2021) Broadband Sub-6GHz Slot-based MIMO antenna for 5G NR bands mobile applications. Journal of Physics: Conference Series 1962, .Google Scholar
Sheriff, N, Kamal, S, Tariq Chattha, H, Kim Geok, T and Khawaja, BA (2022) Compact wideband four-port MIMO Antenna for Sub-6 GHz and internet of things applications. Micromachines 13, .Google ScholarPubMed
Liao, SM (2021) MIMO antenna with decoupled antenna Pairs for 5G mobile terminals. In 2021 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC), Shenzhen, China, 120122.Google Scholar
Serghiou, D, Khalily, M, Singh, V, Araghi, A and Tafazolli, R (2020) Sub-6 GHz dual-band 8 × 8 MIMO antenna for 5G smartphones. IEEE Antennas and Wireless Propagation Letters 19, 15461550.Google Scholar
Wong, K, Tsai, C and Lu, J (2017) Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in the future smartphone. IEEE Transactions on Antennas and Propagation 65, 17651778.10.1109/TAP.2017.2670534CrossRefGoogle Scholar
Alja’afreh, SS (2021) Ten antenna array using a small footprint capacitive-coupled-shorted loop antenna for 3.5 GHz 5G smartphone applications. IEEE Access 9, 3379633810.10.1109/ACCESS.2021.3061640CrossRefGoogle Scholar
Piao, H, Jin, Y and Qu, L (2020) A compact and straightforward self-decoupled MIMO antenna system for 5G Applications. IEEE Access 8, 129236129245.Google Scholar
Zhao, A and Ren, Z (2019) Wideband MIMO antenna systems based on coupled-loop antenna for 5G N77/N78/N79 applications in mobile terminals. IEEE Access 7, 9376193771.Google Scholar
Ahmad, U (2021) MIMO antenna system with pattern diversity for Sub-6 GHz mobile phone applications. IEEE Access 9, 149240149249.10.1109/ACCESS.2021.3125097CrossRefGoogle Scholar
Guo, J, Cui, L, Li, C and Sun, B (2018) Side-edge frame printed eight-port dual-band antenna array for 5G smartphone applications. IEEE Transactions on Antennas and Propagation 66, 74127417.Google Scholar
Wang, S (2019) Design of a twelve-port MIMO Antenna for 5G/4G Smartphone Application. In 2019 International Symposium on Antennas and Propagation (ISAP).Google Scholar
Ren, Z, Zhao, A and Wu, S (2019) MIMO antenna with compact decoupled Antenna Pairs for 5G mobile terminals. IEEE Antennas and Wireless Propagation Letters 18, 13671371.10.1109/LAWP.2019.2916738CrossRefGoogle Scholar
Xu, Z and Deng, C (2020) High-Isolated MIMO antenna design based on pattern diversity for 5G Mobile Terminals. IEEE Antennas and Wireless Propagation Letters 19, 467471.Google Scholar
Liu, Y, Zhao, X, Jing, G, He, Y, Xi, M and Zhao, L (2019) Three ways to decouple multiple antennas in a Mobile Terminal. In 2019 International Symposium on Antennas and Propagation (ISAP).Google Scholar
Muhsin, MY, Salim, AJ and Ali, JK (2021) An Eight-Element MIMO Antenna system for 5G Mobile Handsets. In 2021 International Symposium on Networks, Computers and Communications (ISNCC), Dubai, United Arab Emirates.Google Scholar
Alwarafy, A, Sulyman, AI, Alsanie, A, Alshebeili, S and Behairy, H (2015) Receiver spatial diversity propagation path-loss model for an indoor environment at 2.4 GHz. In 2015 6th International Conference on the Network of the Future (NOF).Google Scholar
İncesulu, H, Ulutaş, G, Bilge, H, İmeci, ŞT and Durak, T (2017) F-shaped monopole antenna. In 2017 International Applied Computational Electromagnetics Society Symposium—Italy (ACES).Google Scholar
Park, E, Yoon, YJ and Kim, H (2018) Dual polarization L-Shaped slot array antenna for 5G Metal-Rimmed Mobile Phone, 2018. In International Symposium on Antennas and Propagation (ISAP).Google Scholar
Mok, WC, Wong, SH, Luk, KM and Lee, KF (2013) Single-layer single-patch dual-band and triple-band patch antennas. IEEE Transactions on Antennas and Propagation 61, 43414344.Google Scholar
Wang, Y and Du, Z (2013) A wideband printed dual-antenna system with a novel neutralization line for mobile terminals. IEEE Antennas and Wireless Propagation Letters 12, 14281431.10.1109/LAWP.2013.2287199CrossRefGoogle Scholar
Vaughan, RG (1990) Polarization diversity in mobile communications. IEEE Transactions on Vehicular Technology 39, 177186.10.1109/25.130998CrossRefGoogle Scholar
Zhuang, X, Feng, Z and Wu, D (2015) Strongly coupled array elements decoupled by Eigen-mode analysis and its affection on radiate property. In 2015 IEEE International Wireless Symposium (IWS 2015).Google Scholar
Malviya, L, Panigrahi, RK and Kartikeyan, M (2017) MIMO antennas with diversity and mutual coupling reduction techniques: A review. International Journal of Microwave and Wireless Technologies 9, 17631780.Google Scholar
Mashagba, HA (2021) A hybrid mutual coupling reduction technique in a Dual-Band MIMO textile antenna for WBAN and 5G Applications. IEEE Access 9, 150768150780.10.1109/ACCESS.2021.3125049CrossRefGoogle Scholar
Ullah, R, Ullah, S, Faisal, F, Ullah, R, Mabrouk, IB, Hasan, MJA and Kamal, B (2021) A novel multi-band and multi-generation (2G, 3G, 4G, and 5G) 9-elements MIMO antenna system for 5G smartphone applications. Wireless Networks 27, 48254837.Google Scholar