Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T09:50:11.388Z Has data issue: false hasContentIssue false

Broadband MIMO antenna for HiperLAN/2, WLAN, and WiMAX applications with high isolation

Published online by Cambridge University Press:  09 January 2015

Raefat Jalila El Bakouchi*
Affiliation:
Laboratory of Electrical Systems and Telecommunications, Faculty of Sciences and Technologies, Cadi Ayyad University, Avenue Abdelkarim Elkhattabi, Marrakesh 40000, P.O.BOX 549, Morocco. Phone: +212 613711690
Marc Brunet
Affiliation:
Electronics and Telecommunications Institute of Rennes (IETR-UMR 6164), Ecole Polytechnique of the University of Nantes France, IETR, Nantes, France
Tchanguiz Razban
Affiliation:
Electronics and Telecommunications Institute of Rennes (IETR-UMR 6164), Ecole Polytechnique of the University of Nantes France, IETR, Nantes, France
Abdelilah Ghammaz
Affiliation:
Laboratory of Electrical Systems and Telecommunications, Faculty of Sciences and Technologies, Cadi Ayyad University, Avenue Abdelkarim Elkhattabi, Marrakesh 40000, P.O.BOX 549, Morocco. Phone: +212 613711690
*
Corresponding author:R.J. El Bakouchi Email: [email protected]

Abstract

This paper presents a multiple-input and multiple-output dual-element planar inverted-F antenna (PIFA) array for broadband operation covering the HIgh PERformance radio Local Area Network/2 (5.2 GHz/5.6 GHz), Wireless Local Area Network (5.2 GHz/5.8 GHz), and the Worldwide Interoperability for Microwave Access (5.5 GHz) bands for the compact wireless communication devices. The antenna dimension is reduced substantially with a miniature ground plane. The PIFA array provides a large bandwidth (670 MHz) and a high isolation between its ports less than −26 dB. The proposed antenna has been analyzed and designed with Ansoft HFSS v.11. Then a prototype was fabricated and tested for its performance in terms of bandwidth, S-parameters, and radiation pattern. A parametric study is made to analyze the effect of different PIFA parameters on the operating frequency and the S-parameters. The diversity performances are evaluated using computer simulation technology microwave studio (CSTMWS). The broadband performance and the high isolation are achieved in both simulation and measurement.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Vaughan, R.G.; Andersen, J.B.: Antenna diversity in mobile communications. IEEE Trans. Veh. Technol., VT-36 (1987), 149172.Google Scholar
[2]Karaboikis, M.; Soras, C.; Tsachtsiris, G.; Makios, V.: Compact dual-printed inverted-F antenna diversity systems for portable wireless devices. IEEE Antennas Propag. Lett., 3 (2004), 914.Google Scholar
[3]Ding, Y.; Du, Z.; Gong, K.; Feng, Z.: A novel dual-band printed diversity antenna for mobile terminals. IEEE Trans. Antennas Propag., 55 (2007), 20882096.Google Scholar
[4]Murch, R.D.; Letaief, K.B.: Antenna systems for broadband wireless access. IEEE Commun. Mag., 40 (2002), 7683.Google Scholar
[5]Foschini, G.J.: Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. J. Bell Labs Tech., 1 (1996), 4159.Google Scholar
[6]Wallace, J.; Jensen, M.; Swindlehurst, A.; Jeffs, B.: Experimental characterization of the MIMO wireless channel: data acquisition and analysis. IEEE Trans. Wireless Commun., 2 (2003), 335343.Google Scholar
[7]Meshram, M.K.; Animeh, R.K.; Pimpale, A.T.; Nikolova, N.K.: A Novel quad-band diversity antenna for LTE and Wi-Fi applications with high isolation. IEEE Trans. Antennas Propag., 60 (2012), 43604371.CrossRefGoogle Scholar
[8]Gao, Y.; Chen, X.; Ying, Z.; Parini, C.G.: Design and performance investigation of a dual-element pifa array at 2.5 GHz for MIMO terminal. IEEE Trans. Antennas Propag., 55 (2007), 34333441.Google Scholar
[9]Gao, Y.; Chiau, C.C.; Chen, X.; Parini, C.G.: Modified PIFA and its array for MIMO terminals. Inst. Elect. Eng. Proc. Microw. Antennas Propag., 152 (2005), 253257.CrossRefGoogle Scholar
[10]Balanis, C.A.: Antenna Theory Analysis and Design, 3rd ed., Wiley Inc. Hoboken, New Jersey, USA, 2005.Google Scholar
[11]Shagar, A.C.; Wahidabanu, S.D.: Novel wideband slot antenna having notch-band function for 2.4 GHz WLAN and UWB applications. Int. J. Microw. Wireless Technol., 3 (2011), 451458.Google Scholar
[12]Ibnyaich, S.; Ghammaz, A.; Hassani, M.M.: Planar inverted-F antenna with J-shaped slot and parasitic element for ultra-wide band application. Int. J. Microw. Wireless Technol., 4 (2012), 613621.Google Scholar
[13]Sanz-Izquierdo, B.; Batchelor, J.; Langley, R.: Multiband printed PIFA antenna with ground plane capacitive resonator. Electron. Lett., 40 (2004), 13911392.CrossRefGoogle Scholar
[14]Tseng, C.F.; Chen, Y.W.: Small pifa for ZigBee and wlan application. Microw. Opt. Technol. Lett., 55 (2013), 10741077.Google Scholar
[15]Ben Ahmed, M.; Bouhorma, M.; Elouaai, F.; Mamouni, A.: Low SAR planar antenna for multi standard cellular phones. Eur. Phys. J. Appl. Phys., 53 (2011), 33604.Google Scholar
[16]Panaïa, P.; Luxey, C.; Jacquemod, G.; Staraj, R.; Petit, L.; Dussopt, L.: Multistandard reconfigurable pifa antenna. Microw. Opt. Technol. Lett., 48 (2006), 19751977.CrossRefGoogle Scholar
[17]Nepa, P.; Manara, G.; Serra, A.A.; Nenna, G.: Multiband PIFA for WLAN mobile terminals. IEEE Antennas Wireless Propag. Lett., 4 (2005), 349350.Google Scholar
[18]Blanch, C.; Romeu, J.; Corbella, I.: Exact representation of antenna system diversity performance from input parameter description. Electron. Lett., 39 (2003), 705707.CrossRefGoogle Scholar