Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-15T19:24:06.051Z Has data issue: false hasContentIssue false

An analytical simplified model to characterize focused aperture antennas

Published online by Cambridge University Press:  05 September 2014

Antonio García-Pino*
Affiliation:
AtlantTIC (Atlantic Research Center for Information and Communication Tecnologies), E.E. Telecomunicación, University of Vigo, 36310 Vigo, Spain. Phone: +34 986 812123
*
Corresponding author: A. García-Pino Email: [email protected]

Abstract

This paper presents an analytical model to characterize the radiation pattern of focused aperture antennas. The model is based on the classic parabolic on pedestal distribution for amplitude, but in this work the focusing phase term is considered and applied in the Fresnel region. The model is useful for millimeter and submillimeter wave imaging radar systems that usually work in the Fresnel region of the antenna. Analytical closed expressions are developed to predict the available resolution (transversal beamwidth) and operating range (axial beamwidth) of such systems. The effects of the first- and second-order phase distributions on the aperture have also been also studied in order to show the scanning effect, the axial refocusing, and the astigmatic beam degradation.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Fear, E.; Li, X.; Hagness, S.; Stuchly, M.: Confocal microwave imaging for breast cancer detection: localization of tumors in three dimensions. IEEE Trans. Biomed. Eng., 49 (8) (2002), 812822.Google Scholar
[2]Quivira, F.; Fassbender, K.; Martinez-Lorenzo, J.A.; Rappaport, C. M.: Feasibility of tunnel detection under rough ground surfaces using underground focusing spotlight synthetic aperture radar, in Proc. IEEE Int. Technologies for Homeland Security (HST) Conf., 2010, 357362.CrossRefGoogle Scholar
[3]Sheen, D.; McMakin, D.; Hall, T.: Three-dimensional millimeter wave imaging for concealed weapon detection. IEEE Transact. Microw. Theory Tech., 49 (9) (2001), 15811592.Google Scholar
[4]Siegel, P.: Thz technology. IEEE Trans. Microw. Theory Tech., 50th Anniversary Issue, 50 (3) (2002), 910928.Google Scholar
[5]Appleby, R.; Wallace, H.B.: Standoff detection of weapons and contraband in the 100 GHz to 1 THz region. IEEE Trans. Antennas Propag., 55 (11) (2007), 29442956.Google Scholar
[6]Sheen, D.M.; Hall, T.E.; Severtsen, R.H.; McMakin, D.L.; Hatchell, B.K.; Valdez, P.L.J.: Active wideband 350 GHz imaging system for concealed-weapon detection, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conf. Series, vol. 7309, May 2009.Google Scholar
[7]Weg, C.A.; Von Spiegel, W.; Henneberger, R.; Zimmermann, R.; Loeffler, T.; Roskos, H.G.: Fast active THz cameras with ranging capabilities. J. Infrared Millim. Terahertz Waves, 30 (12) (2009), 12811296. Dec 2009, 33rd Int. Conf. Infrared, Millimeter, and Terahertz Waves, Pasadena, CA, SEP, 2008.Google Scholar
[8]Cooper, K.; Dengler, R.; Llombart, N.; Thomas, B.; Chattopadhyay, G.; Siegel, P.H.: Thz imaging radar for standoff personnel screening. IEEE Trans. Terahertz Sci. Technol., 1 (1) (2011), 169182.Google Scholar
[9]Llombart, N.; Cooper, K.B.; Dengler, R.J.; Bryllert, T.; Siegel, P.H.: Confocal ellipsoidal reflector system for a mechanically scanned active terahertz imager. IEEE Trans. Antennas Propag., 58 (6) (2010), 18341841.Google Scholar
[10]Garcia-Pino, A.; Llombart, N.; Gonzalez-Valdes, B.; Rubiños-Lopez, O.: A bifocal ellipsoidal Gregorian reflector system for THz imaging applications. IEEE Trans. Antennas Propag., 60 (9) (2012), 41194129.Google Scholar
[11]Shermann III, J.W.: Properties of focused apertures in the Fresnel region. IRE Trans. Antennas Propag., 10 (4) (1962), 399408.Google Scholar
[12]Graham, W.J.: Analysis and synthesis of axial field patterns of focused apertures. IEEE Trans. Antennas Propag., 31 (4) (1983), 665668.Google Scholar
[13]Hansen, R.C.: Focal region characteristics of focused array antennas. IEEE Trans. Antennas Propag., 33 (12) (1985), 13281337.Google Scholar
[14]Shafai, L.; Kishk, A.A.; Sebak, A.: Near field focusing of apertures and reflector antennas, in IEEE WESCANEX 97 Communications, Power and Computing Conf. Proc., Winnipeg, Canada, 22–23 May 1997, 246–251.Google Scholar
[15]Aleksieieva, A.; Dolzhikov, V.V.: Field fluctuations in the Fresnel zone of a circular focused aperture in the presence of phase errors, in 3rd European Conf. Antennas and Propagation (EUCAP 2009), Berlin, 23–27 March 2009, 3121–3125.Google Scholar
[16]Li, Y.; Wolf, E.: Focal shifts in diffracted converging spherical waves. Opt. Commun., 39 (4) (1981), 211215.Google Scholar
[17]Parker Givens, M.: Focal shifts in diffracted converging spherical waves. Opt. Commun., 41 (3) (1982), 145148.Google Scholar
[18]Friberg, A.T.; Visser, T.D.; Wang, W.; Wolf, E.: Focal shifts of converging diffracted waves of any state of spatial coherence. Opt. Commun., 196 (2001), 17.Google Scholar
[19]Li, Y.: Focal shifts in diffracted converging electromagnetic waves. I. Kirchoff theory. J. Opt. Soc. Am. A, 22 (1) (2005), 6876.Google Scholar
[20]Li, Y.: Focal shifts in diffracted converging electromagnetic waves. II. Rayleigh theory. J. Opt. Soc. Am. A, 22 (1) (2005), 7783.Google Scholar
[21]Milligan, T.: Modern Antenna Design, McGraw-Hill Book Company, New York, 1985.Google Scholar
[22]Balanis, C.A.: Antenna Theory, Analysis and Design, 3rd ed., Section 12.2 “Field equivalence principle: Huygens' principle”. Wiley, New York, 2005.Google Scholar
[23]Balanis, C.A.: Advanced Engineering Electromagnetics, Section 6.8 “Near Field”. Wiley, New York, 1989.Google Scholar
[24]Abramovitz, M.; Stegun, I.: Handbook of Mathematical Functions, Dover Publications Inc., New York, 1964.Google Scholar
[25]Tallarida, R.J.: Pocket Book of Integral and Mathematical Formulas, 3rd ed., Chapman Hall, London, 1999.Google Scholar
[26]Martinez-Lorenzo, J.A.; García Pino, A.; Vega, I.; Arias, M.; Rubiños, O.: ICARA: induced-current analysis of reflector antennas. IEEE Antennas Propag. Mag., 47 (2) (2005), 92100.Google Scholar
[27]Dragone, C.: A first-order treatment of aberrations in cassegrainian and gregorian antennas. IEEE Trans. Antennas Propag., 30 (3) (1982), 331339.Google Scholar