Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T00:42:25.178Z Has data issue: false hasContentIssue false

All standard materials flat reflector made by transformation electromagnetics

Published online by Cambridge University Press:  28 January 2014

Mark Clemente Arenas*
Affiliation:
Institut Mines Télécom, Télécom ParisTech – LTCI CNRS UMR 5141, 46 rue Barrault, 75634, Paris cedex 13, France. Phone: +33 145817222
Anne Claire Lepage
Affiliation:
Institut Mines Télécom, Télécom ParisTech – LTCI CNRS UMR 5141, 46 rue Barrault, 75634, Paris cedex 13, France. Phone: +33 145817222
Xavier Begaud
Affiliation:
Institut Mines Télécom, Télécom ParisTech – LTCI CNRS UMR 5141, 46 rue Barrault, 75634, Paris cedex 13, France. Phone: +33 145817222
Paul Henri Tichit
Affiliation:
Institut d'Electronique Fondamentale, Université Paris-Sud, CNRS UMR 8622, Centre Scientifique d'Orsay, 91400 Orsay, France
André de Lustrac
Affiliation:
Institut d'Electronique Fondamentale, Université Paris-Sud, CNRS UMR 8622, Centre Scientifique d'Orsay, 91400 Orsay, France Université Paris Ouest Nanterre la Défense, 92000 Nanterre, France
*
Corresponding author: M.C. Arenas Email: [email protected]

Abstract

In this paper, the design methodology of a flat reflector composed with standard dielectric material and using transformation electromagnetics (TE) is presented. First, the mathematical relation between a flat reflector and a parabolic one is described. The TE principle is then described. Some realization issues are highlighted, leading to approximations and compromises in order to design a more realistic structure. In this way, a flat reflector made only with standard dielectric materials is presented, using an original method to achieve the desired spatial permittivity variation. The simulation results of different configurations for the flat reflector are presented and compared to classical solutions in order to prove the thickness reduction and the improvement of radiation characteristics in terms of gain and half-power beamwidth.

Type
Articles Selected from the 2013 National Microwave Days in France
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Pendry, J.B.; Schurig, D.; Smith, D.R.: Controlling electromagnetic fields. Science, 312 (2006), 17801782.CrossRefGoogle ScholarPubMed
[2]Schurig, D. et al. : Metamaterial electromagnetic cloak at microwave frequencies. Science, 314 (2006), 977980.CrossRefGoogle ScholarPubMed
[3]Tichit, P.H.; Burokur, S.N.; Germain, D.; De Lustrac, A.: Design and experimental demonstration of a high-directive emission with transformation optics. Phys. Rev. B, 83 (2011), 155108.CrossRefGoogle Scholar
[4]Kwon, D.H.; Werner, D.H.: Transformation electromagnetics: an overview of the theory and applications. IEEE Antennas Propag. Mag., 52 (1) (2010), 2446.CrossRefGoogle Scholar
[5]Kong, F.; Wu, B.-I.; Kong, J.A.; Huangfu, J.; Xi, S.; Chen, H.: Planar focusing antenna design by using coordinate transformation technology. Appl. Phys. Lett., 91 (25) (2007), 253509.CrossRefGoogle Scholar
[6]Tang, W.; Argyropoulos, C.; Kallos, E.; Song, W.; Hao, Y.: Discrete coordinate transformation for designing all-dielectric flat antennas. IEEE Trans. Antennas Propag., 58 (2010), 37953804.CrossRefGoogle Scholar
[7]Schulwitz, L.; Mortazawi, L.: A new low loss Rotman lens design using a graded dielectric substrate, IEEE Trans. Microwave Theory and Techniques, 56 (12) (2008), 27342741.CrossRefGoogle Scholar