Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-18T15:16:15.106Z Has data issue: false hasContentIssue false

Active frequency-tripler MMICs for 300 GHz signal generation

Published online by Cambridge University Press:  09 March 2012

Ulrich Johannes Lewark*
Affiliation:
Institut für Hochfrequenztechnik und Elektronik, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany. Phone: +49 721 608 47669
Axel Tessmann
Affiliation:
Fraunhofer Institute for Applied Solid State Physics (IAF), Tullastrasse 72, D-79108, Germany
Hermann Massler
Affiliation:
Fraunhofer Institute for Applied Solid State Physics (IAF), Tullastrasse 72, D-79108, Germany
Sandrine Wagner
Affiliation:
Fraunhofer Institute for Applied Solid State Physics (IAF), Tullastrasse 72, D-79108, Germany
Arnulf Leuther
Affiliation:
Fraunhofer Institute for Applied Solid State Physics (IAF), Tullastrasse 72, D-79108, Germany
Ingmar Kallfass
Affiliation:
Institut für Hochfrequenztechnik und Elektronik, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany. Phone: +49 721 608 47669 Fraunhofer Institute for Applied Solid State Physics (IAF), Tullastrasse 72, D-79108, Germany
*
Corresponding author: U. J. Lewark Email: [email protected]

Abstract

Two frequency-tripler monolithic microwave integrated circuits (MMICs) reaching sub-millimeter-wave output frequencies of 315 GHz are presented. The convenient integration of transistor–based field effect transistor (FET) frequency multipliers into multifunctional MMICs is shown by integration of a single–stage frequency-tripler with a buffer amplifier generating −0.5 dBm of peak output power at 288. Without post-amplification an average output power of −10.1 dBm in the output frequency range from 285 to 315 is measured with 10 dBm of input power. The 3-dB bandwidth is more than 30 GHz and could not be determined exactly due to the measurement setup. Both MMICs are realized in a 50 nm metamorphic high electron mobility transistor (HEMT) transistor technology. A multiple power-meter measurement technique including a waveguide filter is used to measure accurately the second harmonic power content within the output spectrum.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Tessmann, A.: A 300 GHz mHEMT amplifier module, in Proc. IEEE Int. Conf. on Indium Phosphide Related Materials, 2009. IPRM'09. Newport, May 2009, 196199.Google Scholar
[2]Tessmann, A.; Leuther, A.; Massler, H.; Kuri, M.; Loesch, R.: A metamorphic 220–320 GHz HEMT amplifier MMIC, in IEEE Proc. Compound Semiconductor Integrated Circuits Symp., 2008. CSIC'08, Monterey, October 2008, 14.Google Scholar
[3]Deal, W.; Mei, X. B.; Leong, K. M. K. H.; Radisic, V.; Sarkozy, S.; Lai, R.: THz monolithic integrated circuits using InP high electron mobility transistors. IEEE Trans. Terahertz Sci. Technol., 1(1) (2011), 2532.Google Scholar
[4]Camargo, E.: Design of FET Frequency Multipliers and Harmonic Oscillators, ser. Artech House Microwave Library, Artech House, Boston, 1998.Google Scholar
[5]Kallfass, I.; Massler, H.; Tessmann, A.; Leuther, A.; Schlechtweg, M.; Weimann, G.: A broadband frequency sixtupler MIMIC for the W-band with >7 dBm output power and >6 dB conversion gain, in IEEE/MTT-S Int. Proc. Microwave Symp., 2007. Honolulu, June 2007, 21692172.7+dBm+output+power+and+>6+dB+conversion+gain,+in+IEEE/MTT-S+Int.+Proc.+Microwave+Symp.,+2007.+Honolulu,+June+2007,+2169–2172.>Google Scholar
[6]Tessmann, A. et al. : Metamorphic HEMT MMICs and modules for use in a high-bandwidth 210 GHz radar. IEEE J. Solid-State Circuits, 43(10) (2008), 21942205.Google Scholar
[7]Lewark, U. J.; Tessmann, A.; Massler, H.; Leuther, A.; Kallfass, I.: Active single ended frequency multiplier-by-nine MMIC for millimeter-wave imaging applications, in Proc. Workshop Integrated Nonlinear Microwave and Millimetre-Wave Circuits (INMMIC), Vienna, April 2011, 14.Google Scholar
[8]Weber, R.; Lewark, U.; Leuther, A.; Kallfass, I.: A W-band × 12 multiplier MMIC with excellent spurious suppression. IEEE Microw. Wirel. Compon. Lett., 21(4) (2011), 212214.Google Scholar
[9]Kallfass, I. et al. : A 300 GHz active frequency-doubler and integrated resistive mixer MMIC, in Proc. Europ. Microwave Integrated Circuits Conf., 2009. EuMIC 2009. Rome, September 2009, 200203.Google Scholar
[10]Lewark, U. J.; Tessmann, A.; Massler, H.; Wagner, S.; Leuther, A.; Kallfass, I.: 300 GHz active frequency-tripler MMICs, in Proc. European Microwave Integrated Circuits Conf. (EuMIC), Manchester, 2011, 236239.Google Scholar
[11]Leuther, A. et al. : 50 nm MHEMT technology for G- and H-band MMICs, in IEEE 19th Int. Conf. on Proc. Indium Phosphide Related Materials, 2007. IPRM'07. Matsue, May 2007, 2427.CrossRefGoogle Scholar
[12]Maas, S. A.: Nonlinear Microwave and RF Circuits, ser. Artech House Microwave Library. 2nd ed., Artech House, Boston, 2003, ch 10, 475495.Google Scholar
[13]Seelmann-Eggebert, M.; Merkle, T.; van Raay, F.; Quay, R.; Schlechtweg, M.: A systematic state-space approach to large-signal transistor modeling, IEEE Trans. Microw. Theory Tech., 55(2) (2007), 195206.CrossRefGoogle Scholar
[14]Tessmann, A.; Massler, H.; Lewark, U.; Wagner, S.; Kallfass, I.; Leuther, A.: Fully integrated 300 GHz receiver S-MMICs in 50 nm metamorphic HEMT technology, in Proc. IEEE Compound Semiconductor Integrated Circuit Symp. (CSICS), Kona, 2011, 14.CrossRefGoogle Scholar
[15]Chattopadhyay, G. et al. : An all-solid-state broad-band frequency multiplier chain at 1500 GHz, IEEE Trans. Microw. Theory Tech., 52(5) (2004), 15381547.CrossRefGoogle Scholar
[16]Öjefors, E.; Heinemann, B.; Pfeiffer, U.: A 325 GHz frequency multiplier chain in a SiGe HBT technology, in Proc. IEEE Radio Frequency Integrated Circuits Symp. (RFIC), 2010, Anaheim, May 2010, 9194.CrossRefGoogle Scholar