Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-15T10:58:09.015Z Has data issue: false hasContentIssue false

0.7–1.8 GHz multiband digital polar transmitter using watt-class current-mode class-D CMOS power amplifier and digital envelope modulation technique for reduced spurious emissions

Published online by Cambridge University Press:  23 April 2013

Toshifumi Nakatani*
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA. Phone: +1 858 822 6944
Donald F. Kimball
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA. Phone: +1 858 822 6944 MaXentric Technologies, LLC, San Diego, CA 92122, USA
Lawrence E. Larson
Affiliation:
School of Engineering, Brown University, Providence, RI 02912, USA
Peter M. Asbeck
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA. Phone: +1 858 822 6944
*
Corresponding author: T. Nakatani Email: [email protected]

Abstract

A polar transmitter driven by digital input signals for envelope and phase is demonstrated, using a band-switching output resonator to achieve multiband operation. A new digital pulse width modulation algorithm is also shown to partially suppress spurious signals associated with the digital input envelope signal. The transmitter consists of a current-mode class-D (CMCD) CMOS power amplifier (PA), together with a buck converter with a dead-time generator for improved efficiency. The CMCD PA is tuned by band-switching capacitors that can handle up to 9 V, and is measured to have approximately 30 dBm output power with 31–35% drain efficiency under single-tone testing. The proposed spurious signal reduction technique works to partially suppress quantization noise without increasing power consumption. Overall efficiencies of 27.1/25.6% are obtained at 30.2/28.9 dBm continuous wave (CW) output powers and 0.85/1.75 GHz carrier frequencies, respectively. Spur suppression of 9–10 dB peak is achieved when the proposed algorithm is applied with wideband code division multiple access (WCDMA) modulation.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Eloranta, P.; Seppinen, P.; Kallioinen, S.; Saarela, T.; Parssinen, A.: A multimode transmitter in 0.13 µm CMOS using direct-digital RF modulator. IEEE J. Solid-State Circ., 42 (12) (2007), 27742784.Google Scholar
[2]Choi, J. et al. : A ΔΣ-digitized polar RF transmitter. IEEE Trans. Microw. Theory Tech., 55 (12) (2007), 26792690.CrossRefGoogle Scholar
[3]Nakatani, T.; Rode, J.; Kimball, D.F.; Larson, L.E.; Asbeck, P.M.: Digital polar transmitter using a watt-class current-mode class-D CMOS power amplifier, in IEEE RFIC Symp. Dig., June 2011, 293296.Google Scholar
[4]Nakatani, T.; Rode, J.; Kimball, D.F.; Larson, L.E.; Asbeck, P.M.: Digital-controlled polar transmitter using a watt-class current-mode class-D CMOS power amplifier and Guanella reverse balun for handset applications. IEEE J. Solid-State Circ., 47 (5) (2012), 11041112.Google Scholar
[5]Nakatani, T.; Rode, J.; Kimball, D.F.; Larson, L.E.; Asbeck, P.M.; Osman, S.: Dual band current-mode class-D CMOS PA using on-board Guanella reverse balun, in IEEE Power Amplifier Symposium, September 2010 (non-archival) has a preliminary account of the CMCD amplifier.Google Scholar
[6]Peterchev, A.V.; Sanders, S.R.: Quantization resolution and limit cycling in digitally controlled PWM converters, in 32nd Annual lEEE Power Electronics Specialists Conference, June 2001, 465471.Google Scholar
[7]Neo, W.C.E. et al. : Adaptive multi-band multi-mode power amplifier using integrated varactor-based tunable matching networks. IEEE J. Solid-State Circ., 41 (9) (2006), 21662176.Google Scholar
[8]Presti, C.D.; Carrara, F.; Scuderi, A.; Asbeck, P.M.; Palmisano, G.: A 25 dBm digitally modulated CMOS power amplifier for WCDMA/EDGE/OFDM with adaptive digital predistortion and efficient power control. IEEE J. Solid-State Circ., 44 (7) (2009), 18831896.Google Scholar
[9]Imanishi, D.; Okada, K.; Matsuzawa, A.: A 0.9–3.0 GHz fully integrated tunable CMOS power amplifier for multi-band transmitters, in IEEE ASSCC Dig., November 2009, pp. 253256.Google Scholar
[10]Hur, J.; Lee, O.; Lee, C.-H.; Lim, K.; Laskar, J.: A multi-level and multi-band class-D CMOS power amplifier for the LINC system in the cognitive radio application. IEEE Microw. Wirel. Compon. Lett., 20 (6) (2010), 352354.Google Scholar
[11]Kim, K.Y.; Kim, W.Y.; Son, H.S.; Oh, I.Y.; Park, C.S.: A reconfigurable quad-band CMOS class E power amplifier for mobile and wireless applications. IEEE Microw. Wirel. Compon. Lett., 21 (7) (2011), 380382.CrossRefGoogle Scholar
[12]Nakatani, T.; Kimball, D.F.; Larson, L.E.; Asbeck, P.M.: 0.7–1.8 GHz digital polar transmitter using a watt-class CMOS power amplifier and digital pulse width modulation with spurious signal reduction, in Proc. of the 7th European Microwave Integrated Circuits Conference, October 2012, 340352.Google Scholar
[13]Jiang, X.; Lopez, N.D.; Maksimovic, D.: A switched mode envelope tracker for polar EDGE transmitter, in 37nd Annual lEEE Power Electronics Specialists Conference, June 2006, 17.Google Scholar
[14]Alimenti, A.; Gesano, A.; Nocito, P.; Pezzetta, D.: High efficiency VHF transmitters based on polar modulator and enhanced PWM power converter, in Proc. of the 10th European Conf. on Wireless Tech., October 2007, 3639.Google Scholar
[15]Tao, C.; Fayed, A.A.: A GSM power amplifier directly-powered from a DC-DC power converter. IEEE Microw. Wirel. Compon. Lett., 22 (1) (2012), 3840.CrossRefGoogle Scholar
[16]Qin, J.; Guo, R.; Park, J.; Huang, A.: A low noise, high efficiency two stage envelope modulator structure for EDGE polar modulation, in Proc. ISCAS ‘09, May 2009, 10891092.Google Scholar
[17]Kitchen, J.N.; Deligoz, I.; Kiaei, S.; Bakkaloglu, B.: Polar SiGe class E and F amplifiers using switched-mode supply modulation. IEEE Trans. Microw. Theory Tech., 55 (5) (2007), 845856.Google Scholar
[18]Chen, J.-H.; Liu, P.-J.; Chen, Y.-J.E.: A spurious emission reduction technique for power amplifiers using frequency hopping DC-DC converters, in IEEE RFIC Symp. Dig., June 2009, 145148.Google Scholar
[19]Tse, K.K.; Chung, H.S.-H.; Hui, S.Y.R.; So, H.C.: A comparative investigation on the use of random modulation schemes for DC/DC converters. IEEE Trans. Ind. Electron., 47 (2) (2000), 253263.Google Scholar
[20]Hung, T.-P.; Metzger, A.G.; Zampardi, P.J.; Iwamoto, M.; Asbeck, P.M.: Design of high-efficiency current-mode class-D amplifier for wireless handsets. IEEE Trans. Microw. Theory Tech., 53 (1) (2005), 144151.Google Scholar