Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-18T20:18:27.085Z Has data issue: false hasContentIssue false

A 60 GHz eight-element phased-array receiver front-end in 0.25 µm SiGe BiCMOS technology

Published online by Cambridge University Press:  20 September 2012

Mohamed Elkhouly*
Affiliation:
IHP, Im Technologiepark 25, Frankfurt (Oder), Germany. Phone: +493355625573
Chang-Soon Choi
Affiliation:
NTT DoCoMo Communications Laboratories Europe GmbH, Munich, Germany
Srdjan Glisic
Affiliation:
IHP, Im Technologiepark 25, Frankfurt (Oder), Germany. Phone: +493355625573
Frank Ellinger
Affiliation:
Electrical Engineering Department, Dresden University of Technology, Dresden, Germany
J. Christoph Scheytt
Affiliation:
Heinz Nixdorf Institute, University of Paderborn, Paderborn, Germany
*
Corresponding author: M. Elkhouly Email: [email protected]

Abstract

This paper presents the design of an eight-element 60 GHz phased-array receiver chip with interference mitigation capability, fabricated in 0.25 μm SiGe BiCMOS technology. Each receiver element contains a low noise amplifier (LNA) and a vector-modulator that supports high-resolution amplitude and phase control. A fully differential power combining network follows the eight elements. The chip also includes an active power divider, a down conversion mixer, and fully integrated 48 GHz PLL to demonstrate the IF down-conversion. With LNA, a phase shifter and hybrid active and passive power combining network, each receiver path achieves 18 dB of gain, 360° phase shift in steps less than 3°, 20 dB amplitude control, and 4 GHz 3 dB-bandwidth and input referred 1 dB compression point P1 dB of each element is of −22 dBm. Each receiver element dissipates in total 132 mW. The phased-array receiver shows more than 25 dB of signal to interference noise ratio, by means of amplitude and phase control.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Floyd, B.A.; Reynolds, S.K.; Pfeiffer, U.R.; Zwick, T.; Beukema, T.; Gaucher, B.: A 60 GHz CMOS receiver front-end. IEEE J. Solid-State Circuits, 40 (1) (2005), 156167.Google Scholar
[2]Reynolds, S.; Floyd, B.; Pfeiffer, U.; Beukema, T.; Grzyb, J.; Haymes, C.; Gaucher, B.; Soyuer, M.: A silicon 60 GHz receiver and transmitter chipset for wideband communication. IEEE J. Solid-State Circuits, 41 (12) (2006), 28202831.Google Scholar
[3]Niknejad, A.M.; Hashemi, H.: mm-Wave Silicon Technology: 60 GHz and Beyond. Springer, New York, 2008.Google Scholar
[4]Sen, P.; Sarkar, S.; Perumana, B.; Dawn, D.; Yeh, D.; Barale, F.; Leung, M.; Juntunen, E.; Vadivelu, P.; Chuang, K.; Melet, P.; Iyer, G.; Laskar, J.: 60 GHz single-chip cmos digital radio and phased array solutions for gamming and connectivity. IEEE J. Sel. Areas Commun., 27 (8) (2009), 13471357.Google Scholar
[5]Borremans, J.; Raczkowski, K.; Wambacq, P.: A digitally controlled compact 57-to-66 GHz front-end in 45 nm CMOS, in IEEE Int. Solid-State Circuits Conf. (ISSCC), 2009.CrossRefGoogle Scholar
[6]Razavi, B.: A 60 GHz CMOS receiver frond-end. IEEE J. Solid-State Circuits, 41 (1) (2005), 1722.CrossRefGoogle Scholar
[7]Guan, X.; Hashemi, H.; Hajimiri, A.: A fully integrated 24-GHz eight-element phased array receiver in silicon. IEEE J. Solid-State Circuits, 39 (12) (2004), 23112320.Google Scholar
[8]Zimmermann, D.C.; Parker, D.: Phased arrays-parts I: theory and architectures. IEEE Trans. Microw. Theory Tech., 50 (3) (2002), 678687.Google Scholar
[9]Zimmermann, D.C.; Parker, D.: Phased arrays-part II: implementations, applications, and future trends. IEEE Trans. Microw. Theory Techn., 50 (3) (2002), 688698.Google Scholar
[10]Choi, C.-S.; Elkhouly, M.; Grass, E.; Scheytt, C.: 60-GHz Adaptive beamforming receiver arrays for interference mitigation, In IEEE Int. Symp. on Personal Indoor and Mobile Radio Communications (PIMRC), September 2010, 761766.Google Scholar
[11]Natarajan, A.; Komijani, A.; Hajimiri, A.: A fully integrated 24-GHz phased-array transmitter in CMOS. IEEE J. Solid-State Circuits, 40 (12) (2005), 25022514.Google Scholar
[12]Natarajan, A.; Komijani, A.; Guan, X.; Babakhani, A.; Hajimiri, A: A 77 GHz phased array transceiver with on-chip antennas in silicon: transmitter and local LO-Path phase shifting. IEEE J. Solid-State Circuits, 41 (12) (2006), 28072819.Google Scholar
[13]Patnaik, S.; Harjani, R.: A 24-GHz Phased-array receiver in 0.13-um CMOS using an 8-GHz LO, in IEEE Radio Frequency Integrated Circuits Symp., 2010, 465468.Google Scholar
[14]Patnaik, S.; Lanka, N.; Harjani, R.: A dual-mode architecture for phased-array receiver based on injection locking in 0.13 um CMOS, in IEEE Int. Solid-State Circuits Conf., 2009, 490492.Google Scholar
[15]Kim, S.; Gudem, P.S.; Larson, L.E.: A 44-GHz 8-element phased-array SiGe HBT transmitter RFIC with an injection-locked quadrature frequency multiplier, in IEEE Radio Frequency Integrated Circuits Symp., 2010, 453456.Google Scholar
[16]Jeon, S.; Wang, Y.-J.; Wang, H.; Bohn, F.; Natarajan, A.; Babakhani, A.; Hajimiri, A.: A scalable 6-to-18 GHz concurrent dual-band quad-beam phased-array receiver in CMOS. IEEE J. Solid-State Circuits, 43 (12) (2008), 26602673.Google Scholar
[17]Wang, C.-S.; Huang, J.-W.; Chu, K.-D.; Wang, C.-K.: A 60-GHz phased array receiver front-end in 0.13-um CMOS technology. IEEE Trans. Circuits Syst., 56 (10) (2009), 23412352.CrossRefGoogle Scholar
[18]Buckwalter, J.F.; Babakhani, A.; Komijani, A.; Hajimiri, A.: An integrated subharmonic coupled-oscillator scheme for a 60-GHz phased-array transmitter. IEEE Trans. Microw. Theory Tech., 54 (12) (2006), 42714280.Google Scholar
[19]Kishimoto, S.; Orihashi, N.; Hamada, Y.; Ito, M.; Maruhashi, K.: A 60 GHz band CMOS phased array transmitter utilizing compact baseband phase shifter, in IEEE Radio Frequency Integrated Circuits Symp. (RFIC), June 2009.Google Scholar
[20]Raczkowski, K.; De Raedt, W.; Nauwelaers, B.; Wambacq, P.: A wideband beamforming for a phased-array 60 GHz receiver in 40 nm digital CMOS, in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2010, 4041.Google Scholar
[21]Koh, K.-J.; Rebeiz, G.M.: An X-and Ku-band 8-element phased-array receiver in 0.18-um SiGe BiCMOS Technology. IEEE J. Solid-State Circuits, 43 (6) (2008), 112.Google Scholar
[22]Koh, K.-J.; May, J.W.; Rebeiz, G.M.: A millimeter-wave (40–45 GHz) 16 element phased array transmitter in 0.18-um SiGe BiCMOS technology. IEEE J. Solid-State Circuits, 44 (5) (2009), 14981509.Google Scholar
[23]Koh, K-J; Rebeiz, G.M.: A Q-band four-element phased-array front-end receiver with integrated wilkinson power combiners in 0.18-um SiGe BiCMOS technology. IEEE Trans. Microw. Theory Tech., 56 (9) (2008), 20462053.Google Scholar
[24]Yu, T.; Rebeiz, G.M.: A 24 GHz 4-channel phased-array receiver in 0.13 um CMOS, in IEEE Radio Frequency Integrated Circuits Symp., 2008, 361364.Google Scholar
[25]Yikun, Y.; Baltus, P.; van Roermund, A.; de Graauw, A.; van der Heijden, E.; Collados, M.; Vaucher, C.: A 60 GHz digitally controlled RF-beamforming receiver front-end in 65 nm CMOS, in IEEE Radio Frequency Integrated Circuits Symp. (RFIC), 2009.Google Scholar
[26]Valdes-Garcia, A.; Nicolson, S.T.; Lai, J.-W.; Natarajan, A.; Chen, P.-Y.; Reynolds, S.K.; Zhan, J.-H.C.; Kam, D.G.; Liu, D.; Floyd, B.: A SiGe BiCMOS 16-element phased-array transmitter for 60 GHz communications, in IEEE Int. Solid-State Circuits Conf. (ISSCC), 2010, 218220.Google Scholar
[27]Reynolds, S.K.; Natarajan, A.S.; Tsai, M.-D.; Nicolson, S.; Zhan, J.-H.C.; Duixian, Liu; Kam, D.G.; Huang, O.; Valdes-Garcia, A.; Floyd, B.A.: A 16-element phased array receiver IC for 60 GHz communication in SiGe BiCMOS, in IEEE Radio Frequency Integrated Circuits Symp., 2010, 461464.Google Scholar
[28]Cohen, E.; Jakobson, C.; Ravid, S.; Ritter, D.: A thirty two element phased-array transceiver at 60 GHz with RF-If conversion block in 90 nm flip chip CMOS process, in IEEE Radio Frequency Integrated Circuits Symp., 2010, 457459.Google Scholar
[29]Sun, Y.; Borngraber, J.; Herzel, F.; Winkler, W.: A fully differential 60 GHz LNA in SiGe:C BiCMOS technology, in Bipolar/BiCMOS Circuits and Technology meeting (BCTM), October 2005, 1417.Google Scholar
[30]Sun, Y.; Glisic, S.; Herzel, F.: Fully differential 60 GHz receiver front-end with integrated PLL in SiGe BiCMOS, in European Microwave Integrated Circuit Conference (EuMIC), Manchester, October 2006, 198201.Google Scholar
[31]Herzel, F.; Glisic, S.; Winkler, W.: Integrated frequency synthesizer in SiGe BiCMOS technology for 60 and 24 GHz wireless applications. Electron. Lett., 43 (2007), 154156.Google Scholar
[32]Sarkas, I.; Khanpour, M.; Tomkins, A.; Chevalier, P.; Garcia, P.; Voinigescu, S.P.: W-band 65 nm CMOS and sige transmitter and receiver with lumped I-Q Phase shifters, in IEEE Radio Frequency Integrated Circuits Symp., June 2009, 441444.Google Scholar
[33]Tsai, M.-Da; Natarajan, A.: 60 GHz passive and active RF-path phase shifters in silicon, in IEEE Radio Frequency Integrated Circuits Symp., June 2009, 223226.Google Scholar
[34]Sawicki, A.; Sachse, K.: Novel coupled-line conductor-backed coplanar and microstrip directional couplers for PCB and LTCC applications. IEEE Trans. Microw. Theory Tech., 51 (6) (2003), 17431751.Google Scholar
[35]Elkhouly, M.; Chang-Soon Choi; Glisic, S.; Scheytt, C.; Ellinger, F.: Millimeter-wave beamforming circuits in SiGe BiCMOS, in IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), October 2010, 129132.CrossRefGoogle Scholar
[36]Kang, D.-W.; Kim, J.-G.; Min, B.-W.; Rebeiz, G.M.: Single and four-element Ka-Band transmit/receive phased-array silicon RFIC with 5-bit amplitude and phase control. IEEE Trans. Microw. Theory Tech., 57 (12) (2009), 35343543.Google Scholar
[37]Koh, K.-J.; Rebeiz, G.M.: A Q-band four-element phased-array front-end receiver with integrated wilkinson power combiners in 0.18-um SiGe BiCMOS technology. IEEE Trans. Microw. Theory Tech., 56 (9) (2008), 20462053.Google Scholar
[38]Sun, Y.; Scheytt, C. J.: A low-power 60 GHz receiver front-end with a variable-gain LNA in SiGe BiCMOS technology, in IEEE BCTM, 2010, 192195.Google Scholar