Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T22:09:42.561Z Has data issue: false hasContentIssue false

Ultraviolet irradiation of glycine in presence of pyrite as a model of chemical evolution: an experimental and molecular modelling approach

Published online by Cambridge University Press:  26 July 2016

Azarhel de la Cruz-López
Affiliation:
División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa de Méndez, Col. La Esmeralda. Cunduacán, C.P. 86690, Tabasco, México Universidad Nacional Autónoma de México, Instituto de Ciencias Nucleares, Ciudad Universitaria, Circuito Exterior S/N, Coyoacán, C.P. 04510, Ciudad de México, México
Ebelia del Ángel-Meraz
Affiliation:
División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa de Méndez, Col. La Esmeralda. Cunduacán, C.P. 86690, Tabasco, México
María Colín-García
Affiliation:
Universidad Nacional Autónoma de México, Instituto de Geología, Ciudad Universitaria, Circuito Exterior S/N, Coyoacán, C.P. 04510 Ciudad de México, México
Sergio Ramos-Bernal
Affiliation:
Universidad Nacional Autónoma de México, Instituto de Ciencias Nucleares, Ciudad Universitaria, Circuito Exterior S/N, Coyoacán, C.P. 04510, Ciudad de México, México
Alicia Negrón-Mendoza
Affiliation:
Universidad Nacional Autónoma de México, Instituto de Ciencias Nucleares, Ciudad Universitaria, Circuito Exterior S/N, Coyoacán, C.P. 04510, Ciudad de México, México
Alejandro Heredia*
Affiliation:
Universidad Nacional Autónoma de México, Instituto de Ciencias Nucleares, Ciudad Universitaria, Circuito Exterior S/N, Coyoacán, C.P. 04510, Ciudad de México, México

Abstract

In this work, the molecular interaction of the amino acid glycine and the mineral pyrite was performed to gain insight into the potential role of the mineral as a precursor of chemical complexity in the presence of ultraviolet (UV) radiation. Glycine samples were self-assembled on pyrite with and without exposure to UV radiation and subsequently characterized by scanning electron microscopy, infrared spectroscopy (with the second-derivative method), and AM1 and PM3 semi-empirical molecular computational simulations. In this work, our molecular modelling results suggest that pyrite acts as a template for self-assembly of glycine, and it is a potential catalyst for the glycine dimerization of relevance in interstellar space and ancient Earth conditions. A change in the structural complexity of glycine from the α to its γ polymorph when irradiated with UV radiation can be a condition for chemical evolution towards living forms.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baran, J. & Ratajczak, H. (2005). Polarised IR and Raman spectra of the γ-glycine single crystal. Spectrochim. Acta A, Mol. Biomol. Spectrosc. 61, 16111626.CrossRefGoogle ScholarPubMed
Barth, A. & Haris, P.I. (2009). Biological and Biomedical Infrared Spectroscopy. IOS Press, Amsterdam, Netherlands.Google Scholar
Bebié, J. & Schoonen, M.A. (2000). Pyrite surface interaction with selected organic aqueous species under anoxic conditions. Geochem. Trans. 1, 47.Google Scholar
Betejtin, A. (1970). Curso de mineralogía. Mir, Moscú.Google Scholar
Borda, M.J., Strongin, D.R. & Schoonen, M.A. (2004). A vibrational spectroscopic study of the oxidation of pyrite by molecular oxygen. Geochim. Cosmochim. Acta 68, 18071813.CrossRefGoogle Scholar
Burns, R.G. & Fisher, D.S. (1990). Iron-sulfur mineralogy of Mars: magmatic evolution and chemical weathering products. J. Geophys. Res. 95, 14415.Google Scholar
Cabán-Acevedo, M., Kaiser, N.S., English, C.R., Liang, D., Thompson, B.J., Chen, H.-E., Czech, K.J., Wright, J.C., Hamers, R.J. & Jin, S. (2014). Ionization of High-density deep donor defect states explains the low photovoltage of iron pyrite single crystals. J. Am. Chem. Soc. 136, 1716317179.Google Scholar
Cleaves, H.J. II, Michalkova Scott, A., Hill, F.C., Leszczynski, J., Sahai, N., Hazen, R. (2012). Mineral–organic interfacial processes: potential roles in the origins of life. Chem. Soc. Rev. 41, 5502.Google Scholar
Cleaves, H.J., Lazcano, A., Ledesma Mateos, I., Negrón-Mendoza, A., Peretó, J. & Silva, E. (2014). Herrera's ‘Plasmogenia’ and Other Collected Works. Springer New York, New York, NY.Google Scholar
Cockell, C.S. (2000). Ultraviolet radiation and the photobiology of earth's early oceans. Orig. Life Evol. Biosph. J. Int. Soc. Stud. Orig. Life 30, 467499.Google Scholar
Colin-Garcia, M., Heredia, A., Negron-Mendoza, A. & Ramos-Bernal, S. (2012). Organics-minerals interactions and the origin of life. LPI Contrib. 1667, 6072.Google Scholar
Colin-Garcia, M., Heredia, A., Negron-Mendoza, A., Ortega, F., Pi, T. & Ramos-Bernal, S. (2014). Adsorption of HCN onto sodium montmorillonite dependent on the pH as a component to chemical evolution. Int. J. Astrobiol. 13, 310318.Google Scholar
Contreras-Torres, F.F. & Basiuk, V.A. (2005). Theoretical prediction of gas-phase infrared spectra of imidazo[1,2-a]pyrazinediones and imidazo[1,2-a]imidazo[1,2-d]pyrazinediones derived from glycine. Spectrochim. Acta A, Mol. Biomol. Spectrosc. 61, 25602575.CrossRefGoogle ScholarPubMed
Degens, E.T. (1989). Perspectives on Biogeochemistry. Springer, Berlin; Heidelberg; New York; London; Paris; Tokyo.Google Scholar
Draganić, Z.D., Niketić, V. & Vujošević, S.I. (1985). Radiation chemistry of an aqueous solution of glycine: compounds of interest to chemical evolution studies. J. Mol. Evol. 22, 8290.Google Scholar
Folliet, N., Gervais, C., Costa, D., Laurent, G., Babonneau, F., Stievano, L., Lambert, J.-F. & Tielens, F. (2013). A molecular picture of the adsorption of glycine in mesoporous silica through NMR experiments combined with DFT-D calculations. J. Phys. Chem. C 117, 41044114.Google Scholar
Gallignani, M., Rondón, R.A., Ovalles, J.F. & Brunetto, M.R. (2014). Transmission FTIR derivative spectroscopy for estimation of furosemide in raw material and tablet dosage form. Acta Pharm. Sin. B 4, 376383.Google Scholar
Glavin, D.P. & Bada, J.L. (2001). Survival of amino acids in micrometeorites during atmospheric entry. Astrobiology 1, 259269.Google Scholar
Goldman, N., Reed, E.J., Fried, L.E., William Kuo, I.F. & Maiti, A. (2010). Synthesis of glycine-containing complexes in impacts of comets on early Earth. Nat. Chem. 2, 949954.Google Scholar
Hazen, R.M., Papineau, D., Bleeker, W., Downs, R.T., Ferry, J.M., McCoy, T.J., Sverjensky, D.A. & Yang, H. (2008). Mineral evolution. Am. Mineral. 93, 16931720.CrossRefGoogle Scholar
Heredia, A., van der Strate, H.J., Delgadillo, I., Basiuk, V.A. & Vrieling, E.G. (2008). Analysis of organo–silica interactions during valve formation in synchronously growing cells of the diatomnavicula pelliculosa. ChemBioChem 9, 573584.Google Scholar
Horneck, G. (ed.) (2007). Complete Course in Astrobiology. Wiley–VCH, Weinheim.Google Scholar
Hu, J., Zhang, Y., Law, M. & Wu, R. (2012). Increasing the band gap of iron pyrite by alloying with oxygen. J. Am. Chem. Soc. 134, 1321613219.Google Scholar
Moriarty, D., Hibbitts, C.A., Lisse, C.M., Dyar, M.D., Harlow, G., Ebel, D. & Peale, R. (2010). Near-far IR spectra of sulfide minerals relevant to comets. In Presented at the Lunar and Planetary Science Conf., March 1–5, 2010 in The Woodlands, Texas, p. 2447.Google Scholar
Mourant, J.R., Yamada, Y.R., Carpenter, S., Dominique, L.R. & Freyer, J.P. (2003). FTIR spectroscopy demonstrates biochemical differences in mammalian cell cultures at different growth stages. Biophys. J. 85, 19381947.Google Scholar
Okihana, H. & Ponnamperuma, C. (1982). A protective function of the coacervates against UV light on the primitive Earth. Nature 299, 347349.Google Scholar
Patel, M.R., Bérces, A., Kerékgyárto, T., Rontó, G., Lammer, H. & Zarnecki, J.C. (2004). Annual solar UV exposure and biological effective dose rates on the Martian surface. Adv. Space Res. Off. J. Comm. Space Res. COSPAR 33, 12471252.Google Scholar
Pernet, A., Pilmé, J., Pauzat, F., Ellinger, Y., Sirotti, F., Silly, M., Parent, P. & Laffon, C. (2013). Possible survival of simple amino acids to X-ray irradiation in ice: the case of glycine. Astron. Astrophys. 552, A100.Google Scholar
Pilling, S. et al. (2011). Photostability of gas- and solid-phase biomolecules within dense molecular clouds due to soft X-rays: photostability of biomolecules in ISM. Mon. Not. R. Astron. Soc. 411, 22142222.CrossRefGoogle Scholar
Pilling, S., Mendes, L.A.V., Bordalo, V., Guaman, C.F.M., Ponciano, C.R. & da Silveira, E.F. (2013). The influence of crystallinity degree on the glycine decomposition induced by 1 mev proton bombardment in space analog conditions. Astrobiology 13, 7991.Google Scholar
Pilling, S., Nair, B.G., Escobar, A., Fraser, H. & Mason, N. (2014). The temperature effect on the glycine decomposition induced by 2 keV electron bombardment in space analog conditions. Eur. Phys. J. D 68, 19.Google Scholar
Portugal, W., Pilling, S., Boduch, P., Rothard, H. & Andrade, D.P.P. (2014). Radiolysis of amino acids by heavy and energetic cosmic ray analogues in simulated space environments: glycine zwitterion form. Mon. Not. R. Astron. Soc. 441, 32093225.Google Scholar
Rath, R.K., Subramanian, S. & Pradeep, T. (2000). Surface chemical studies on pyrite in the presence of polysaccharide-based flotation depressants. J. Colloid Interface Sci. 229, 8291.Google Scholar
Rickard, D. (2015). Pyrite: A Natural History of Fool's Gold. Oxford University Press, New York.Google Scholar
Russell, M.J., Daniel, R.M., Hall, A.J. & Sherringham, J.A. (1994). A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. J. Mol. Evol. 39, 231243.Google Scholar
Tributsch, H., Fiechter, S., Jokisch, D., Rojas-Chapana, J. & Ellmer, K. (2003). Photoelectrochemical power, chemical energy and catalytic activity for organic evolution on natural pyrite interfaces. Orig. Life Evol. Biosph. J. Int. Soc. Stud. Orig. Life 33, 129162.Google Scholar
Zhang, X., Borda, M.J., Schoonen, M.A. & Strongin, D.R. (2003). Pyrite oxidation inhibition by a cross-linked lipid coating. Geochem. Trans. 4, 8.CrossRefGoogle ScholarPubMed
Zolotov, M.Y. & Shock, E.L. (2005). Formation of jarosite-bearing deposits through aqueous oxidation of pyrite at Meridiani Planum. Mars. Geophys. Res. Lett. 32. doi: 10.1029/2005GL024253.Google Scholar