Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T05:32:12.507Z Has data issue: false hasContentIssue false

Three body resonances in close orbiting planetary systems: tidal dissipation and orbital evolution

Published online by Cambridge University Press:  14 May 2014

John C. B. Papaloizou*
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK e-mail: [email protected]

Abstract

We study the orbital evolution of a three-planet system with masses in the super-Earth regime resulting from the action of tides on the planets induced by the central star which cause orbital circularization. We consider systems either in or near to a three-body commensurability for which adjacent pairs of planets are in a first-order commensurability. We develop a simple analytic solution, derived from a time averaged set of equations, that describes the expansion of the system away from strict commensurability as a function of time, once a state where relevant resonant angles undergo small amplitude librations has been attained. We perform numerical simulations that show the attainment of such resonant states focusing on the Kepler 60 system. The results of the simulations confirm many of the scalings predicted by the appropriate analytic solution. We go on to indicate how the results can be applied to put constraints on the amount of tidal dissipation that has occurred in the system. For example, if the system has been in a librating state since its formation, we find that its present period ratios imply an upper limit on the time average of 1/Q′, With Q′ being the tidal dissipation parameter. On the other hand if a librating state has not been attained, a lower upper bound applies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, R., Jackson, B., Raymond, S.N., West, A.A. & Greenberg, R. (2009). Astrophys. J. 695, 1006.Google Scholar
Batalha, N.M. et al. (2013). Astrophys. J. Suppl. 204, 24.Google Scholar
Batygin, K. & Morbidelli, A. (2012). Astron. J. 145, 1.Google Scholar
Beaugé, C. & Nesvorny, D. (2012). Astrophys. J. 751, 119.Google Scholar
Brouwer, D. & Clemence, G.M. (1961). Methods of Celestial Mechanics. Academic Press, New York.Google Scholar
Correia, A.C.M. et al. (2010). Astron. Astrophys. 511, id.A21.CrossRefGoogle Scholar
Cossou, C., Raymond, S.N. & Pierens, A. (2013). Astron. Astrophys. 553, L2.Google Scholar
Cresswell, P. & Nelson, R.P. (2006). Astron. Astrophys. 450, 833.CrossRefGoogle Scholar
Gerlach, E. & Haghighipour, N. (2012). Cel. Mech. Dyn. Astron. 113, 35.Google Scholar
Goldreich, P. & Soter, S. (1966). Icarus 5, 375.Google Scholar
Hansen, B.M.S. & Murray, N. (2013). Astrophys. J. 775, 53.Google Scholar
Ivanov, P.B. & Papaloizou, J.C.B. (2007). Mon. Not. R. Astron. Soc. 376, 682.Google Scholar
Kley, W. & Nelson, R.P. (2012). Annu. Rev. Astron. Astrophys. 50, 211.Google Scholar
Libert, A.S. & Tsiganis, K. (2011). Cel. Mech. Dyn. Astron. 111, 201.Google Scholar
Lissauer, J.J. et al. (2011). Astrophys. J. Suppl. 197, 8.Google Scholar
Lithwick, Y. & Wu, Y. (2012). Astrophys. J. 756, L11.Google Scholar
Marti, J.G., Giuppone, C.A. & Beauge, C. (2013). Mon. Not. R. Astron. Soc. 433, 928.Google Scholar
Mayor, M. et al. (2009). Astron. Astrophys. 493, 639.Google Scholar
Migaszewski, C., Sĺonina, M. & Goździewski, K. (2012). Mon. Not. R. Astron. Soc. 427, 770.Google Scholar
Murray, C.D. & Dermott, S.F. (1999). Solar System Dynamics Cambridge University Press, Cambridge, pp. 254255.Google Scholar
Ojakangas, G.W. & Stevenson, D.J. (1986). Icarus 66, 341.CrossRefGoogle Scholar
Paardekooper, S.-J. & Mellema, G. (2006). Astron. Astrophys. 459, L17.Google Scholar
Papaloizou, J.C.B. (2003). Cel. Mech. Dyn. Astron. 87, 53.Google Scholar
Papaloizou, J.C.B. (2011). Cel. Mech. Dyn. Astron. 111, 83.CrossRefGoogle Scholar
Papaloizou, J.C.B. & Szuszkiewicz, E. (2005). Mon. Not. R. Astron. Soc. 363, 153.Google Scholar
Papaloizou, J.C.B. & Terquem, C. (2001). Mon. Not. R. Astron. Soc. 325, 221.Google Scholar
Papaloizou, J.C.B. & Terquem, C. (2006). Rep. Prog. Phys. 69, 119.Google Scholar
Papaloizou, J.C.B. & Terquem, C. (2010). Mon. Not. R. Astron. Soc. 405, 573.Google Scholar
Raymond, S.N., Barnes, R. & Mandell, A.M. (2008). Mon. Not. R. Astron. Soc. 384, 663.Google Scholar
Sinclair, A.T. (1975). Mon. Not. R. Astron. Soc. 171, 59.Google Scholar
Steffen, J.H. et al. (2013). Mon. Not. R. Astron. Soc. 428, 1077.Google Scholar
Terquem, C. & Papaloizou, J.C.B. (2007). Astrophys. J. 654, 1110.Google Scholar
Thommes, E.W., Bryden, G., Wu, Y. & Rasio, F.A. (2008). Astrophys. J. 675, 1538.Google Scholar
Ward, W.R. (1997). Icarus 126, 261.Google Scholar