Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T02:45:01.162Z Has data issue: false hasContentIssue false

The sulphur dilemma: are there biosignatures on Europa's icy and patchy surface?

Published online by Cambridge University Press:  04 July 2006

J. Chela-Flores
Affiliation:
The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34014 Trieste, Italy Instituto de Estudios Avanzados, Apartado Postal 17606 Parque Central, Caracas 1015A, R. B. Venezuela e-mail: [email protected]

Abstract

We discuss whether sulphur traces on Jupiter's moon Europa could be of biogenic origin. The compounds detected by the Galileo mission have been conjectured to be endogenic, most likely of cryovolcanic origin, due to their non-uniform distribution in patches. The Galileo space probe first detected the sulphur compounds, as well as revealing that this moon almost certainly has a volcanically heated and potentially habitable ocean hiding beneath a surface layer of ice. In planning future exploration of Europa there are options for sorting out the source of the surficial sulphur. For instance, one possibility is searching for the sulphur source in the context of the study of the Europa Microprobe In Situ Explorer (EMPIE), which has been framed within the Jovian Minisat Explorer Technology Reference Study (ESA). It is conceivable that sulphur may have come from the nearby moon Io, where sulphur and other volcanic elements are abundant. Secondly, volcanic eruptions in Europa's seafloor may have brought sulphur to the surface. Can waste products rising from bacterial colonies beneath the icy surface be a third alternative significant factor in the sulphur patches on the Europan surface? Provided that microorganisms on Europa have the same biochemical pathways as those on Earth, over geologic time it is possible that autochthonous microbes can add substantially to the sulphur deposits on the surface of Europa. We discuss possible interpretations of the non-water-ice elements (especially the sulphur compound mercaptan) in the context of the studies for future missions. To achieve reliable biosignatures it seems essential to go back to Europa. Our work highlights the type of biogenic signatures that can be searched for when probing Europa's icy and patchy surface.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)