Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T09:10:19.840Z Has data issue: false hasContentIssue false

The search for habitable planets with biosignature gases framed by a ‘Biosignature Drake Equation’

Published online by Cambridge University Press:  24 May 2017

Sara Seager*
Affiliation:
Massachusetts Institute of Technology, 54-1718 77 Mass. Avenue, Cambridge, MA, USA

Abstract

The discovery of thousands of exoplanets in the last two decades has uncovered a wide diversity of planets that are very different from those in our own Solar System. Ideas for how to detect signs of life in the variety of planetary possibilities, by way of biosignature gases, are expanding, although they largely remain grounded in study of familiar gases produced by life on Earth and how they appear in Earth's spectrum as viewed as an exoplanet. What are the chances we will be able to observe and identify biosignature gases on exoplanets in the coming two decades? I review the status of the search for habitable planets and biosignature gases framed by a ‘Biosignature Drake Equation’.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anglada-Escudé, G. et al. (2016). Nature 536, 437440.Google Scholar
Bekker, A. et al. (2004). Nature 427, 117120.Google Scholar
Bochanski, J.J., Munn, J.A., Hawley, S.L., West, A.A., Covey, K.R. & Schneider, D.P. (2007). Astron. J. 134, 24182429.Google Scholar
Borucki, W.J. et al. (2010). Science 327, 977980.Google Scholar
Burke, C.J. et al. (2015). Astrophys. J. 809, 8.Google Scholar
Cassan, A. et al. (2012). Nature 481, 167169.Google Scholar
Charbonneau, D. et al. (2009). Nature 462, 891894.Google Scholar
Chomiuk, L. & Povich, M.S. (2011). Astron. J. 142, 197.Google Scholar
Ciardi, D.R. et al. (2011). Astron. J. 141, 108.Google Scholar
Cocconi, G. & Morrison, P. (1959). Nature 184, 844846.Google Scholar
Dalcanton, J. et al. (2015). AURA Report: From Cosmic Birth to Living Earths: The Future of UVOIR Space Astronomy, arXiv:1507.04779.Google Scholar
De Wit, J. et al. (2016). Nature 537, 6972.Google Scholar
Deming, D. et al. (2009). Pub. Astron. Soc. Pacific 121, 952967.Google Scholar
Dmitry, S., Kasdin, N.J. & Eric, C. (2010). Pub. Astron. Soc. Pacific 122, 401.Google Scholar
Domagal-Goldman, S.D., Segura, A., Claire, M.W., Robinson, T.D. & Meadows, V.S. (2014). Astrophys. J. 792, 90.Google Scholar
Drake, F. (1961). Phys. Today 14, 4046.Google Scholar
Drake, F. (1962). Intelligent Life in Space. Macmillan, New York, London.Google Scholar
Drake, F. (2013). Int. J. Astrobiol. 12, 173176.Google Scholar
Dressing, C.D. & Charbonneau, D. (2015). Astrophys. J. 807, 45.Google Scholar
Foreman-Mackey, D., Hogg, D.W. & Morton, T.D. (2014). Astrophys. J. 795, 6475.Google Scholar
Fressin, F. et al. (2013). Astrophys. J. 766, 81.Google Scholar
Fusetani, N. (2012). In Natural Products in Chemical Biology, ed. Civjan, N., pp. 3164, John Wiley and Sons, New York.Google Scholar
Gardner, J.P. et al. (2006). Space Sci. Rev. 123, 485606.Google Scholar
Gillon, M. et al. (2016). Nature 533, 221224.Google Scholar
Gillon, M. et al. (2017). Nature 542, 456460.Google Scholar
Gunatilaka, A.L. (2012). In Natural Products in Chemical Biology, ed. Civjan, N., pp. 129, John Wiley and Sons, New York.Google Scholar
Haqq-Misra, J.D., Domagal-Goldman, S.D., Kasting, P.J. & Kasting, J.F. (2008). Astrobiology 8, 11271137.Google Scholar
Harman, C.E., Schwieterman, E.W., Schottelkotte, J.C. & Kasting, J.F. (2015). Astrophys. J. 812, 137.Google Scholar
Howard, A.W. (2013). Science 340, 572576.Google Scholar
Hu, R., Seager, S. & Bains, W. (2012). Astrophys. J. 761, 166194.Google Scholar
Kane, S.R. et al. (2016). Astrophys. J. 830, 1.Google Scholar
Kasting, J. (1988). Icarus 74, 472494.Google Scholar
Kasting, J.F. & Catling, D. (2003). Ann. Rev. Astron. Astrophys. 41, 429463.Google Scholar
Krissansen-Totton, J., Bergsman, D.S. & Catling, D.C. (2016). Astrobiology 16, 3967.Google Scholar
Lawson, P. R. et al. (2012). Proc. SPIE 8447, 844722-1844722-21.Google Scholar
Lederberg, J. (1965). Nature 207, 913.Google Scholar
Léger, A., Mariotti, J.M., Mennesson, B., Ollivier, M., Puget, J.L., Rouan, D. & Schneider, J. (1996). Icarus 123, 249255.Google Scholar
Léger, A., Fontecave, M., Labeyrie, A., Samuel, B., Demangeon, O. & Valencia, D. (2011). Astrobiology 11, 335341.Google Scholar
Lenton, T.M. & Watson, A.J. (2000). Glob. Biogeochem. Cycles 14, 249268.Google Scholar
Lippincott, E.R., Eck, R.V., Dayhoff, M.O. & Sagan, C. (1967). Astrophys. J. 147, 753764.Google Scholar
Lovelock, J.E. (1965). Nature 207, 568570.Google Scholar
Luger, R. & Barnes, R. (2015). Astrobiology 15, 119143.Google Scholar
Mawet, D. et al. (2012). Proc. SPIE 8442, 844204-1844204-24.Google Scholar
Noecker, M.C., Zhao, F., Demers, R., Trauger, J., Guyon, O. & Jeremy Kasdin, N. (2016). J. Astron. Telesc. Instrum. Syst. 2, 011001011001.Google Scholar
Nutzman, P. and Charbonneau, D., (2008), PASP, 120, 317327.Google Scholar
Owen, T. (1980). In Strategies for the Search for Life in the Universe, ed. Papagiannis, M.D., pp. 177185, Reidel, Dordrecht.Google Scholar
Petigura, E.A., Marcy, G.W. & Howard, A.W. (2013). Astrophys. J., 770, 69.Google Scholar
Reid, I.N. & Hawley, S.L. (2004). Recent Advances in Understanding Star and Planet Formation. Springer-Verlag, Berlin and Praxis Publishing, Chichester, UK.Google Scholar
Ricker, G. et al. (2015). J. Astron. Telesc. Instrum. Syst. 1, 111.Google Scholar
Rogers, R.A. (2015). Astrophys. J. 801, 41.Google Scholar
Sanchez, S., Guzmán-Trampe, S., Ávalos, M., Ruiz, B., Rodríguez-Sanoja, R., Jiménez-Estrada, M. (2012). In Natural Products in Chemical Biology, ed. Civjan, N., pp. 65108, John Wiley and Sons, New York.Google Scholar
Schindler, T.L. & Kasting, J.F. (2000). Icarus 145, 262271.Google Scholar
Seager, et al. (2015). Proc. SPIE 9605, 96050W-196050W-18.Google Scholar
Seager, S. (2010). Exoplanet Atmospheres: Physical Processes. Princeton University Press, Princeton, NJ.Google Scholar
Seager, S. & Bains, W. (2015). Science Advances, 1, 111.Google Scholar
Seager, S., Kuchner, M., Hier-Majumder, C.A. & Militzer, B. (2007). Astrophys. J. 669, 1279.Google Scholar
Seager, S., Bains, W. & Hu, R. (2013). Astrophys. J. 775, 104.Google Scholar
Seager, S., Bains, W. & Petkowski, J.J. (2016). Astrobiology 16, 465485.Google Scholar
Seager, S. & Sasselov, D.D. (2000). Astrophys. J. 537, 916.Google Scholar
Segura, A. et al. (2005). Astrobiology 5, 706725.Google Scholar
Selsis, F., Despois, D. & Parisot, J.-P. (2002). A&A 388, 9851003.Google Scholar
Silburt, A., Gaidos, E. & Wu, Y. (2015). Astrophys. J. 799, 180.Google Scholar
Stapelfeldt, et al. (2015). Proc. SPIE 9605, 96050T-196050T-14.Google Scholar
Stark, C.C., Roberge, A., Mandell, A. & Robinson, T.D. (2014). Astrophys. J. 795, 122.Google Scholar
Sullivan, P.W. et al. (2015). Astrophys. J. 809, 77.Google Scholar
Sumi, T. et al. (2010). Astrophys. J. 710, 1641.Google Scholar
Swift, D.C. et al. (2012). Astrophys. J. 744, 59.Google Scholar
Tarter, J. (2001). Ann. Rev. Astron. Astrophys., 39, 511548.Google Scholar
Thomas, S., Belikov, R. & Bendek, E. (2015). Astrophys. J. 810, 8194.Google Scholar
Trabert, R., Shaklan, S. B., Lisman, P. D. et al. (2015). Proc. SPIE 9605, 96050Y-196050Y-12.Google Scholar
Valencia, D., O'connell, R.J. & Sasselov, D. (2006). Icarus 181, 545554.Google Scholar
Weiss, L.M. & Marcy, G.W. (2014). Astrophys. J. Lett. 783, L6.Google Scholar
Winn, J.N. & Fabrycky, D.C. (2015). Ann. Rev. Astron. Astrophys. 53, 409447.Google Scholar
Wordsworth, R. & Pierrehumbert, R. (2014). Astrophys. J. Lett. 785, L20.Google Scholar
Zahnle, K.J., Claire, M.W. & Catling, D.C. (2006). Geobiology 4, 271283.Google Scholar
Zeng, L. & Sasselov, D. (2013). Pub. Astron. Soc. Pacific 125, 227239.Google Scholar