Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T05:38:46.007Z Has data issue: false hasContentIssue false

The role of dynamics on the habitability of an Earth-like planet

Published online by Cambridge University Press:  03 November 2014

Elke Pilat-Lohinger*
Affiliation:
Institute of Astrophysics, University of Vienna, Türkenschanzstrasse 17, A-1180 Vienna, Austria

Abstract

From the numerous detected planets outside the Solar System, no terrestrial planet comparable with our Earth has been discovered so far. The search for an Exo-Earth is certainly a big challenge which may require the detections of planetary systems resembling our Solar System in order to find life like on Earth. However, even if we find Solar System analogues, it is not certain that a planet in Earth position will have similar circumstances as those of the Earth. Small changes in the architecture of the giant planets can lead to orbital perturbations which may change the conditions of habitability for a terrestrial planet in the habitable zone (HZ). We present a numerical investigation where we first study the motion of test-planets in a particular Jupiter–Saturn configuration for which we can expect strong gravitational perturbations on the motion at the Earth's position according to a previous work. In this study, we show that these strong perturbations can be reduced significantly by the neighbouring planets of Earth. In the second part of our study, we investigate the motion of test-planets in inclined Jupiter–Saturn systems where we analyse changes in the dynamical behaviour of the inner planetary system. Moderate values of inclination seem to counteract the perturbations in the HZ, while high inclinations induce more chaos in this region. Finally, we carry out a stability study of the actual orbits of Venus, Earth and Mars moving in the inclined Jupiter–Saturn systems for which we used the Solar System parameters. This study shows that the three terrestrial planets will only move in low-eccentric orbits if Saturn's inclination is ≤10°. Therefore, it seems that it is advantageous for the habitability of Earth when all planets move nearly in the same plane.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bazso, A., Dvorak, R., Pilat-Lohinger, E., Eybl, V. & Lhotka, Ch. (2010). CeMDA 107, 57.Google Scholar
Chambers, J.E. (1999). Mon. Not. R. Astron. Soc. 304, 793.Google Scholar
Eggl, S., Pilat-Lohinger, E., Georgakarakos, N., Gyergyovits, M. & Funk, B. (2012). Astrophys. J. 752, 74.Google Scholar
Eggl, S., Pilat-Lohinger, E., Funk, B., Georgakarakos, N. & Haghighipour, N. (2013). Mon. Not. R. Astron. Soc. 428, 3104.CrossRefGoogle Scholar
Forget, F. & Pierrehumbert, R.T. (1997). Science 278, 1273.Google Scholar
Froeschlé, C. (1984). CMDA 34, 95.Google Scholar
Froeschlé, C., Lega, E. & Gonczi, R. (1997). CMDA 67, 41.CrossRefGoogle Scholar
Gehman, C.S., Adams, F.C. & Laughlin, G. (1996). Publ. Astron. Soc. Pacific 108, 1018.Google Scholar
Jones, B.W. & Sleep, P.N. (2002). Astron. Astrophys. 393, 1015.Google Scholar
Jones, B.W., Underwood, D.R. & Sleep, P.N. (2005). Astrophys. J. 622, 1091.Google Scholar
Kasting, J.F., Whitmire, D.P. & Reynolds, R.T. (1993). Icarus 101, 108.Google Scholar
Kopparapu, R.K., Ramirez, R., Kasting, J.F., Eymet, V., Robinson, T.D., Mahadevan, S., Terrien, R.C., Domagal-Goldman, S., Meadows, V. & Deshpande, R. (2013a). Astrophys. J. 765, 131.Google Scholar
Kopparapu, R.K., Ramirez, R., Kasting, J.F., Eymet, V., Robinson, T.D., Mahadevan, S., Terrien, R.C., Domagal-Goldman, S., Meadows, V. & Deshpande, R. (2013b). Astrophys. J. 770, 82.Google Scholar
Laskar, J. (1990). Icarus 88, 266.Google Scholar
Leconte, J., Forget, F., Charnay, B., Wordsworth, R. & Pottier, A. (2013). Nature 504, 268.Google Scholar
Levison, H.F., Morbidelli, A., Tsiganis, K., Nesvorny, D. & Gomes, R. (2011). Astron. J. 142, 152.Google Scholar
Mayor, M. & Queloz, D. (1995). Nature 378, 355.CrossRefGoogle Scholar
Menou, K. & Tabachnik, S. (2003). Astrophys. J. 583, 473.Google Scholar
Mischna, M.A., Kasting, J.F., Pavlov, A. & Freedman, R. (2000). Icarus 145, 546.Google Scholar
Morbidelli, A., Tsiganis, K., Crida, A., Levison, H.F. & Gomes, R. (2007). Astron. J. 134, 1790.Google Scholar
Müller, T.W.A & Haghighipour, N. (2014). ApJ 782, 26.Google Scholar
Murray, C.D. & Dermott, S.F. (1999). Solar System Dynamics.: Cambridge University Press, Cambridge.Google Scholar
Pilat-Lohinger, E., Süli, Á., Robutel, P. & Freistetter, F. (2008a). Astrophys. J. 681, 1639.Google Scholar
Pilat-Lohinger, E., Robutel, P., Süli, Á. & Freistetter, F. (2008b). CeMDA 102, 83.Google Scholar
Robutel, P. & Gabern, F. (2006). Mon. Not. R. Astron. Soc. 372, 1463.Google Scholar
Sándor, Zs., Süli, A., Érdi, B., Pilat-Lohinger, E. & Dvorak, R. (2007). Mon. Not. R. Astron. Soc. 375, 11495.CrossRefGoogle Scholar
Tsiganis, K., Gomes, R., Morbidelli, A. & Levison, H.F. (2005). Nature 435, 459.Google Scholar
Williams, D.M. & Pollard, D. (2002). Int. J. Astrobiol. 1, 61.Google Scholar