Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-12T19:42:42.844Z Has data issue: false hasContentIssue false

Perturbations to aquatic photosynthesis due to high-energy cosmic ray induced muon flux in the extragalactic shock model

Published online by Cambridge University Press:  19 June 2013

Lien Rodriguez
Affiliation:
Planetary Science Lab, Department of Physics, Universidad Central ‘Marta Abreu’ de Las Villas, Santa Clara, Cuba e-mail: [email protected]
Rolando Cardenas
Affiliation:
Planetary Science Lab, Department of Physics, Universidad Central ‘Marta Abreu’ de Las Villas, Santa Clara, Cuba e-mail: [email protected]
Oscar Rodriguez
Affiliation:
Instituto Superior de Tecnologías y Ciencias Aplicadas, Havana, Cuba

Abstract

We modify a mathematical model of photosynthesis to quantify the perturbations that high energy muons could make on aquatic primary productivity. Then, we apply this in the context of the extragalactic shock model, according to which Earth receives an enhanced dose of high-energy cosmic rays when it is at the galactic north. We obtain considerable reduction in the photosynthesis rates, consistent with potential drops in biodiversity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atri, D. & Melott, A. (2011). Biological implications of high-energy cosmic ray induced muon flux in the extragalactic shock model. Geophys. Res. Lett. 38, L19203.Google Scholar
Avila, D., Cardenas, R. & Martin, O. (2013). On the photosynthetic potential in the very early archean oceans. Orig. Life Evol. Biosph. 43(1), 6775.CrossRefGoogle ScholarPubMed
Chen, J. (2006). Fluence-to-absorbed dose conversion coefficients for use in radiological protection of embryo and foetus against external exposure to protons from 100 MeV to 100 GeV. Radiat. Prot. Dosim. 118(4), 378.CrossRefGoogle Scholar
Cockell, C. (2000). Ultraviolet radiation and the photobiology of Earth's early oceans. Orig. Life Evol. Biosph. 30, 467499.CrossRefGoogle ScholarPubMed
Dar, A., Laor, A. & Shaviv, N. (1998). Life extinctions by cosmic ray bursts. Phys. Rev. Lett. 80, 58135816.CrossRefGoogle Scholar
Ferrari, A., Pelliccioni, M. & Pillon, M. (1997). Fluence-to-effective dose conversion coefficients for muons. Radiat. Prot. Dosim. 74(4), 227.CrossRefGoogle Scholar
Fritz, J., Neale, P., Davis, R. & Peloquin, J. (2008). Response of Antarctic phytoplankton to solar UVR exposure: inhibition and recovery of photosynthesis in coastal and pelagic assemblages. Mar. Ecol. Prog. Ser. 365, 116.CrossRefGoogle Scholar
Melott, A.L., Atri, D., Thomas, B.C., Medvedev, M.V., Wilson, G.W. & Murray, M.J. (2010). Atmospheric consequences of cosmic ray variability in the extragalactic shock model: 2. Revised ionization levels and their consequences. J. Geophys. Res. 115, E08002.Google Scholar
Pelliccioni, M. (2000). Overview of fluence-to-effective dose and fluence-to-ambient dose equivalent conversion coefficients for high energy radiation calculated using the FLUKA code. Radiat. Prot. Dosim. 88(4), 279.Google Scholar
Peñate, L., Martín, O., Cárdenas, R. & Agustí, S. (2010). Short-term effects of gamma ray bursts on oceanic photosynthesis. Astrophys. Space Sci. 330, 211217.Google Scholar
Sato, T., Endo, A. & Niita, K. (2011). Fluence-to-dose conversion coefficients for muons and pions calculated based on ICRP publication 103 using the PHITS code. Prog. Nucl. Sci. Technol. 2, 432436.CrossRefGoogle Scholar