Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T22:39:58.922Z Has data issue: false hasContentIssue false

The persistence of a chlorophyll spectral biosignature from Martian evaporite and spring analogues under Mars-like conditions

Published online by Cambridge University Press:  17 December 2013

J. M. Stromberg*
Affiliation:
Department of Earth Sciences, Center for Planetary Science and Exploration, University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 3K7 e-mail: [email protected]
D. M. Applin
Affiliation:
Department of Geography, Hyperspectral Optical Sensing for Extraterrestrial Reconnaissance Laboratory, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba, Canada R3B 2E9
E. A. Cloutis
Affiliation:
Department of Geography, Hyperspectral Optical Sensing for Extraterrestrial Reconnaissance Laboratory, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba, Canada R3B 2E9
M. Rice
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, MC 150-21, Pasadena, CA 91125, USA
G. Berard
Affiliation:
Department of Geography, Geosciences Laboratory for Environmental Analysis and Decision-Making, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba, Canada R3B 2E9
P. Mann
Affiliation:
Department of Geography, Hyperspectral Optical Sensing for Extraterrestrial Reconnaissance Laboratory, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba, Canada R3B 2E9

Abstract

Spring and evaporite deposits are considered two of the most promising environments for past habitability on Mars and preservation of biosignatures. Manitoba, Canada hosts the East German Creek (EGC) hypersaline spring complex, and the post impact evaporite gypsum beds of the Lake St. Martin (LSM) impact. The EGC complex has microbial mats, sediments, algae and biofabrics, while endolithic communities are ubiquitous in the LSM gypsum beds. These communities are spectrally detectable based largely on the presence of a chlorophyll absorption band at 670 nm; however, the robustness of this feature under Martian surface conditions was unclear. Biological and biology-bearing samples from EGC and LSM were exposed to conditions similar to the surface of present day Mars (high UV flux, 100 mbar, anoxic, CO2 rich) for up to 44 days, and preservation of the 670 nm chlorophyll feature and chlorophyll red-edge was observed. A decrease in band depth of the 670 nm band ranging from ∼16 to 80% resulted, with correlations seen in the degree of preservation and the spatial proximity of samples to the spring mound and mineral shielding effects. The spectra were deconvolved to Mars Exploration Rover (MER) Pancam and Mars Science Laboratory (MSL) Mastcam science filter bandpasses to investigate the detectability of the 670 nm feature and to compare with common mineral features. The red-edge and 670 nm feature associated with chlorophyll can be distinguished from the spectra of minerals with features below ∼1000 nm, such as hematite and jarosite. However, distinguishing goethite from samples with the chlorophyll feature is more problematic, and quantitative interpretation using band depth data makes little distinction between iron oxyhydroxides and the 670 nm chlorophyll feature. The chlorophyll spectral feature is observable in both Pancam and Mastcam, and we propose that of the proposed EXOMARS Pancam filters, the PHYLL filter is best suited for its detection.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, C.C. & Oehler, D.Z. (2008). A case for ancient springs in Arabia Terra, Mars. Astrobiology 8(738), 10931112.CrossRefGoogle ScholarPubMed
Aubrey, A., Cleaves, H.J., Chalmers, J.H., Skelley, A.M., Mathies, R.A., Grunthaner, F.J., Ehrenfreund, P. & Bada, J.L. (2006). Sulfate minerals and organic compounds on Mars. Geology 34(5), 357360.CrossRefGoogle Scholar
Baker, A.J. & Louda, J.W. (1986). Porphyrins in the geological record. In Biological Markers in the Sedimentary Record, ed. Johns, R.B., pp. 125225. Elsevier, Amsterdam.Google Scholar
Baker, V.R., Strom, G., Gulick, V.C., Kargel, J.S., Komatsu, G. & Kale, V.S. (1991). Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature 352, 589594.CrossRefGoogle Scholar
Bannatyne, B.B. (1959). Gypsum-anhydrite deposits of Manitoba. Manitoba Mines Branch 258, 46.Google Scholar
Bannatyne, B.B. & McCabe, H.R. (1984). Manitoba crater revealed. GEOS 13, 1013.Google Scholar
Barbieri, R. & Stivaletta, N. (2011). Continental evaporites and the search for life on Mars. Geol. J. 46, 513524.CrossRefGoogle Scholar
Battler, M.M., Osinski, G.R. & Banerjee, N.R. (2013a). Mineralogy of saline perennial cold springs on Axel Heiberg Island, Nunavut, Canada and implications for spring deposits on Mars. Icarus 224, 364381.CrossRefGoogle Scholar
Battler, M.M. et al. (2013b). Characterization of acidic cold seep emplaced jarositic Golden Deposit, NWT, Canada, as an analogue for jarosite deposition on Mars. Icarus 224, 382398.CrossRefGoogle Scholar
Bell, J.F. III et al. (2003). Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation. J. Geophys. Res. 108(12), 130.Google Scholar
Bell, J.F. III, Joseph, J., Sohl-Dickstein, J.N., Arneson, H.M., Johnson, M.J., Lemmon, M.T. & Savransky, D. (2006). In-flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments. J. Geophys. Res. 111, E02S03, doi:10.1029/2005JE002444.Google Scholar
Bell, J.F. III, Malin, M.C., Caplinger, M.A., Ravine, M.A., Godber, A.S., Jungers, M.C., Rice, M.R. & Anderson, R.B. (2012). Mastcam Multispectral Imaging on the Mars Science Laboratory Rover: Wavelength Coverage ad Imaging Strategies at the Gale Crater Field Site. 43rd Lunar and Planetary Science Conf., abstract no. 2541.Google Scholar
Berard, G. et al. (2013). A hypersaline spring analogue in Manitoba, Canada for potential ancient spring deposits on Mars. Icarus 224, 399412.CrossRefGoogle Scholar
Berg, J.M., Tymoczko, J.L. & Stryer, L. (2002). Biochemical evolution. In Biochemistry, 5th edn.W.H. Freeman, New York.Google Scholar
Bernstein, M.P., Sandford, S.A., Allamandola, L.J., Gillette, J.S., Clemett, S.J. & Zare, R.N. (1999). UV irradiation of polycyclic aromatic hydrocarbons in ices: production of alcohols, quinones, and ethers. Science 283, 11351138.CrossRefGoogle ScholarPubMed
Bibring, J.-P. et al. (2005). Mars surface diversity as revealed by the OMEGA/Mars Expreess observation. Science 307, 15761581.CrossRefGoogle Scholar
Bishop, J.L., Louris, S.K., Rogoff, D.A. & Rothschild, L. (2006). Nanophase iron oxides as a key ultraviolet sunscreen for ancient photosynthetic microbes. Int. J. Astrobiol. 5, 112.CrossRefGoogle Scholar
Buick, R. (2008). When did oxygenic photosynthesis evolve? Phil. Trans. R. Soc. B 363, 27312743.CrossRefGoogle ScholarPubMed
Burr, D.M., Grier, J.A., McEwen, A.S. & Keszthelya, L.P. (2002). Repeated aqueous flooding from the Cerberus Fossae: evidence for very recently extant, deep groundwater on Mars. Icarus 159, 5373.CrossRefGoogle Scholar
Cady, L.S., Farmer, J.D., Grotzinger, J.P., Schopf, J.W. & Steele, A. (2003). Morphological biosignatures and the search for life on Mars. Astrobiology 3(2), 351–268.CrossRefGoogle ScholarPubMed
Clark, R.N. & Roush, T.L. (1984). Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. J. Geophys. Res. 89, 63296340.CrossRefGoogle Scholar
Cloutis, E.A. et al. (2006). Detection and discrimination of sulfate minerals using reflectance spectroscopy. Icarus 184, 121157.CrossRefGoogle Scholar
Cloutis, E.A., Craig, M.A., Mustard, J.F., Kruzelecky, R.V., Jamroz, W.R., Scott, A., Bish, D.L., Poulet, F., Bibring, J-P. & King, P.L. (2007). Stability of hydrated minerals on Mars. Geophys. Res. Lett. 34, L20202.CrossRefGoogle Scholar
Cloutis, E.A., Berard, G., Mann, P. & Stromberg, J. (2011). The gypsumville – Lake St. Martin impact structure: shoched carbonates, intracrater evaporited and cryptoendoliths. LPSC LXII. abstract no. 6009.Google Scholar
Cockell, C.S., Catling, D.C., Davis, W.L., Snook, K., Kepner, R.L., Lee, P. & McKay, C.P. (2000). The ultraviolet environment of Mars: biological implications past, present, and future. Icarus 146, 343359.CrossRefGoogle ScholarPubMed
Cockell, C.S., Lee, P., Osinski, G., Horneck, G. & Broady, P. (2002). Impact-induced microbial endolithic habitats. Meteorit. Planet. Sci. 37, 12871298.CrossRefGoogle Scholar
Cockell, C.S., Scheurger, A.C., Billi, D., Friedmann, E.I. & Panitz, C. (2005). Effects of a simulated martian UV flux on the cyanobacterium, Chroococcidiopsis sp. 029. Astrobiology 5(2), 127140.CrossRefGoogle ScholarPubMed
Cockell, C.S., McKay, C.P., Warren-Rhodes, K. & Horneck, G. (2008). Ultraviolet radiation-induced limitation to epilithic microbial growth in arid deserts – Dosimetric experiments in the hyperarid core of the Atacama Desert. J. Photochem. Photobiol. B 90, 7987.CrossRefGoogle ScholarPubMed
Cole, G.E. (1915). Report on the salt deposits of Canada and the salt industry. Report 325, Mines Branch, Canada.CrossRefGoogle Scholar
Cousins, C.R., Griffiths, A.D., Crawford, I.A., Prosser, B.J., Storrie-Lombardi, M.C., Davis, L.E., Gunn, M., Coates, A.J., Jones, A.P. & Ward, J.M. (2010). Astrobiological considerations for the selection of the geological filters on the ExoMars PanCam instrument. Astrobiology 10, 933951.CrossRefGoogle ScholarPubMed
Cousins, C.R., Gunn, M., Prosser, B.J., Barnes, D.P., Crawford, I.A., Griffiths, A.D., Davis, L.E. & Coates, A.J. (2012). Selecting the geology filter wavelengths for the ExoMars Panoramic Camera Instrument. Planet. Space Sci. 71, 80100.CrossRefGoogle Scholar
Crowley, J.K., Williams, D.E., Hammartrom, J.M., Piatak, N., Chou, I-M. & Mars, J.C. (2003). Spectral reflectance properties (0.4–2.5 μm) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulphate-hydrate minerals associated with sulphide-bearing mine wastes. Geochem. Explor. Environ. Anal. 3, 219228.CrossRefGoogle Scholar
Dartnell, L.R., Desorgher, L., Ward, J.M. & Coates, A.J. (2007). Modelling the surface and subsurface martian radiations environment: implications for astrobiology. Geophys. Res. Lett. 34, L02207.CrossRefGoogle Scholar
Dartnell, L.R., Storrie-Lombardi, M.C. & Ward, J.M. (2010). Complete fluorescent fingerprints of extremophilic and photosynthetic microbes. Int. J. Astrobiol. 9, 245257.CrossRefGoogle Scholar
Dartnell, L.R., Storrie-Lomardi, M.C., Mulineaux, C.W., Ruban, A.V., Wright, G., Muller, J-P. & Ward, J.M. (2011). Degradation of cyanobacterial biosignatures by ionizing radiation. Astrobiology 11, 997–216.CrossRefGoogle ScholarPubMed
Dartnell, L.R., Page, K., Jorge-Villar, S.E., Wright, G., Munshi, T., Scowen, I.J., Ward, J.M. & Edwards, H.G.M. (2012). Destruction of Raman biosignatures by ionizing radiation and the implications for life detection of Mars. Anal. Bional. Chem. 403, 131144.CrossRefGoogle ScholarPubMed
De Angelis, S. et al. (2013). A VIS-NIR laboratory spectral library of terrestrial Mars analogs: support for the ExoMars – Ma_Miss instrument. LPSC XXIV, abstract no. 1544.Google Scholar
Edwards, H.G.M., de Oliveira, L.F.C., Cockell, C.S., Ellis-Evans, J.C. & Wynn-Williams, D.D. (2004). Raman spectroscopy of senescing snow algae: pigmentation changes in an Anarctic cold desert extremophile. Int. J. Astrobiol. 3, 125129.CrossRefGoogle Scholar
Edwards, H.G.M., Hutchinson, I. & Ingley, R. (2012). The ExoMars Raman spectrometer and the identification of biogeological spectroscopic signatures using a flight-like prototype. Anal. Bioanal. Chem. 404, 17231731.CrossRefGoogle ScholarPubMed
Ehlmann, B.K. & Mustard, J.R. (2012). An in-situ record of major environmental transitions on erly Mars at Northeast Syrtis Major. Geophys. Res. Lett. 39, L11202, doi:10.1029/2012GL051594.CrossRefGoogle Scholar
Farmer, J.D. & Des Marias, D.J. (1999). Exploring for a record of ancient Martian life. J. Geophys. Res. 104(E11), 977995.Google ScholarPubMed
Fassett, C.I., Dickson, J.L., Head, J.W., Levy, J.S. & Marchant, D.R. (2010). Supraglacial and proglacial valleys on Amazonian Mars. Icarus 208, 86100.CrossRefGoogle Scholar
Foster, I.S., King, P.L., Hyde, B.D. & Southam, G. (2010). Characterization of halophiles in natural MgSO4 salts and laboratory enrichment samples: astrobiological implications for Mars. Planet. Space Sci. 58, 599615.CrossRefGoogle Scholar
Friedmann, E.I. (1982). Endolithic microorganisms in the Antarctic cold desert. Science 215, 10451053.CrossRefGoogle ScholarPubMed
Gendrin, A. et al. (2005). Sulfates in martian layered terrains: the OMEGA/Mars Express View. Science 307, 15871589.CrossRefGoogle ScholarPubMed
Ghaemi, F.T. (2009). Design and fabrication of lenses for the color science cameras aboard the Mars Science Laboratory rover. Opt. Eng. 48, 103002.CrossRefGoogle Scholar
Gomez, F. et al. (2011). Multidisciplinary integrated field campaign to an acidic martian Earth analogue with astrobiological interest: Rio Tinto. Int. J. Astrobiol. 10, 291305.CrossRefGoogle Scholar
Gómez, F., Ródriguez-Manfredi, J.A., Ródriguez, N., Fernández-Sampedro, M., Caballero-Castrejón, F.J. & Amils, R. (2012). Habitability: were to look for life? Halophilic hábitats: earth analogs to study Mars habitability. Planet. Space Sci. 68(1), 4855.CrossRefGoogle Scholar
Grasby, S.E. (2000). Saline spring geochemistry, West-Central Manitoba. Report of Activities 2000, Manitoba Industry, Trade and Mines, Manitoba Geological Survey, pp. 214216.Google Scholar
Grasby, S.E. & Londry, K.L. (2007). Biogeochemistry of hypersaline springs supporting a mid-continent marine ecosystem: an analogue for Martian springs? Astrobiology 7, 662683.CrossRefGoogle ScholarPubMed
Grasby, S.E., Allen, C.C., Longazo, T.G., Lisle, J.T., Griffin, D.W. & Beauchamp, B. (2003). Supraglacial sulfur springs and associated biological activity in the Canadian high artic-signs of life beneath the ice. Astrobiology 3, 583596.CrossRefGoogle ScholarPubMed
Grasby, S.E., Bezys, R. & Londry, K.L. (2006). Silica ‘chimneys’ related to paleo-brine discharge from the Williston Basin. J. Geochem. Explor. 89, 149152.CrossRefGoogle Scholar
Head, J.W. III, Hiesinger, H., Ivanov, M.A., Kreslavsky, M.S., Pratt, S. & Thomas, B.J. (1999). Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter Data. Science 286, 21342137.CrossRefGoogle ScholarPubMed
Head, J.W. III, Marchant, D.R., Dickson, J.L., Kress, A.M. & Baker, D.M. (2009). Northern mid-latitude glaciation in the late Amazonian period of Mars: criteria for the recognition of debris-covered glacier and valley glacier landsystem deposits. Earth Planet. Sci. Lett. 294, 306320.CrossRefGoogle Scholar
Hughes, K.A. & Lawley, B. (2003). A novel Anarctic microbial community within gypsum crusts. Environmental Microbiology 5(7), 555565.CrossRefGoogle ScholarPubMed
Janssens, M.J., Hertogen, J., Takahiashi, H., Anders, E. & Lambert, P. (1977). Rochechouart impact crater: identification of projectile. J. Geophys. Res. 82, 750758.CrossRefGoogle Scholar
Johnson, A.P., Pratt, L.M., Vishnivetskaya, T., Pfiffner, S., Bryan, R.A., Dadachova, E., Whyte, L., Radtke, K., Chan, E., Tronick, S., Borgonie, G., Mancinelli, R.L., Rothschild, L.J., Rogoff, D.A., Horikawa, D.D. & Onstott, T.C. (2011). Extended survival of several organisms and amino acids under simulated martian surface conditions. Icarus 211, 11621178.CrossRefGoogle Scholar
King, P.L. & McLennan, S.M. (2010). Sulfur on Mars. Elements 6, 107112.CrossRefGoogle Scholar
Kminek, G. & Bada, J.L. (2006). The effect of ionizing radiation on the preservation of amino acids on Mars. Earth Planet. Sci. Lett. 245, 15.CrossRefGoogle Scholar
Lambert, A., James, T.S. & Thorleifson, L.H. (1998). Combining geomorphological and geodetic data to determine postglacial tilting in Manitoba . J. Paleolimnol. 19, 365376.CrossRefGoogle Scholar
Langevin, Y., Poulet, F., Bibring, J-P. & Gondet, B. (2005). Sulfates in the north polar region of Mars detected by OMEGA/Mars Express. Science 307, 15841586.CrossRefGoogle ScholarPubMed
Leybourne, M.I., Denison, R.E., Cousens, B.L., Bezys, R.K., Gregoire, D.C., Boyle, D.R. & Dobrzanski, E. (2007). Geochemistry, geology, and isotopic (Sr, S, and B) composition of evaporites in the Lake St. Martin impact structure: New constraints on the age of melt rock formation. Geochem. Geophys. Geosys. 8, Q03001, doi:10.1029/2006GC001481.CrossRefGoogle Scholar
Malin, M.C. & Edgett, K.S. (2000). Evidence for recent groundwater seepage and surface runoff on Mars. Science 288, 23302335.CrossRefGoogle ScholarPubMed
Malin, M.C. et al. (2010). The Mars Science Laboratory (MSL) mast-mounted Cameras (Mastcams) flight instruments. Lunar LPSCXLI. Abstract no. 1123.Google Scholar
Manicelli, R.L., Fahlen, T.F., Landheim, R. & Klovstad, M.R. (2004). Brines and evaporites: analogs for martian life. Adv. Space Res. 33, 12441246.CrossRefGoogle Scholar
Marlow, J.J., Martins, Z. & Sephton, M.A. (2011). Organic host analogues and the search for life on Mars. Int. J. Astrobiol. 10(1), 3344.CrossRefGoogle Scholar
Marshall, C.P., Carter, E.A., Leuko, S. & Lavaux, E.J. (2006). Vibrational spectroscopy of extant and fossil microbes: relevance for the astrobiological exploration of Mars. Vib. Spectrosc. 41, 182189.CrossRefGoogle Scholar
McCabe, H.R. & Bannatyne, B.B. (1970). Lake St. Martin crypto-explosion crater and geology of surrounding area. Geol. Surv. Manitoba 3, 70, 79.Google Scholar
Murchie, S.L. et al. (2009). A synthesis of Martian aqueous mineralogy after one Mars year of observations from the Mars Reconnaissance Orbiter. J. Geophys. Res., 114, E00D07, doi:10. 1029/2009JE003344.Google Scholar
Mustard, J.F. et al. (2008). Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature 454, 305309.CrossRefGoogle ScholarPubMed
Parnell, J. (2005). Plate tectonics and the detection of land-based biosignatures on Mars and extrasolar planets. Int. J. Astrobiol. 4, 175186.CrossRefGoogle Scholar
Parnell, J. et al. (2007). Searching for life on Mars: selection of molecular targets for ESA's Aurora ExoMars mission. Astrobiology 7, 578604.CrossRefGoogle ScholarPubMed
Pullan, D. et al. (2008). Identification of morphological biosignatures in martian analogue field specimens using in situ planetary instrumentation. Astrobiology 3(1), 119156.CrossRefGoogle Scholar
Quesada, A., Vincent, W.F. & Lean, D.R.S. (1999). Community and pigment structure of Arctic cyanobacterial assemblages: the occurrence and distribution of UV-absorbing compounds. FEMS Microb. Ecol. 28, 315323.CrossRefGoogle Scholar
Rice, M.S., Bell, J.F. III, Cloutis, E.A., Wang, A., Ruff, S.W., Craig, M.A., Bailey, D.T., Johnson, J.R., de Souza, P.A. Jr. & Farrand, W.H. (2010). Silica-rich deposits and hydrated minerals at Gusev crater, Mars: Vis–NIR spectral characterization and regional mapping. Icarus 205(2), 375395.CrossRefGoogle Scholar
Richardson, L.L. (1995). Remote sensing of algal bloom dynamics. BioScience 46(7), 492501.CrossRefGoogle Scholar
Rossi, A.P., Neukum, G., Pondrelli, M., van Gasselt, S., Zegers, T., Hauber, E., Chicarro, A. & Foing, B. (2008). Large-scale spring deposits on Mars? J. Geophys. Res. 113, E08016.Google Scholar
Rothschild, L.J. (1990). Earth analogs for martian life. Microbes in evaporites, a new model system for life on Mars. Icarus 88, 246260.CrossRefGoogle ScholarPubMed
Sagan, C., Thompson, W.R., Carlson, R., Gurnett, D. & Hord, C. (1993). A search for life on Earth from the Galileo spacecraft. Nature 365, 715721.CrossRefGoogle ScholarPubMed
Schmieder, M., Jourdan, F., Tohver, E., Mayers, C., Frew, A. & Cloutis, E. (2013). The age of the Lake Saint Martin impact structure (Manitoba, Canada). LPSC XXIV, abstract no. 2001.Google Scholar
Schopf, J.W., Farmer, J.D., Foster, I.S., Kudryavtsev, A.B., Gallardo, V.A. & Espinoza, C. (2012). Gypsum-Permineralized Microfossils and Their Relevance to the Search for Life on Mars. Astrobiology 12(7), 618633.CrossRefGoogle Scholar
Schubert, B.A., Lowenstein, T.K. & Timofeeff, M.N. (2009). Microscopic indentification of prokaryotes in modern and Ancient Halite, Saline Valley and Death Valley, California. Astrobiology 9(5), 467482.CrossRefGoogle Scholar
Seager, S., Turner, E.L., Schafer, J. & Ford, E.B. (2005) Microscopic identification of prokaryotes in modern and ancient halite, Saline Valley and Death Valley, California. Astrobiology 5(3), 372389.CrossRefGoogle Scholar
Sherman, D.M. & Waite, T.D. (1985). Electronic spectra of Fe Fe3+oxides and oxide hydroxides in the near IR to near UV. Am. Mineral. 70, 12621269.Google Scholar
Sinha, R.P., Richter, P., Faddoul, J., Braun, M. & Hader, D-P. (2002). Effects of UV and visible light on cyanobacteria at the cellular level. Photochem. Photobiol. Sci. 1, 553559.CrossRefGoogle ScholarPubMed
Spencer, R.J. 2000. Sulfate minerals in evaporite deposits. Rev. Mineral. Geochem. 40, 173192.CrossRefGoogle Scholar
Stivaletta, N. & Barbieri, R. (2009). Endolithic microorganisms from spring mound evaporite deposits (southern Tunisia). J. Arid Environ. 73, 3339.CrossRefGoogle Scholar
Stivaletta, N., Barbieri, R., Marinageli, L., Ori, G.G. & Bosci, M. (2005). Fossil endolithic cyanobacteria in evaporates: implications for the astrobiological exploration. 36th Lunar and Planetary Science Conf., League City, Texas, USA, abstract no. 1354.Google Scholar
Stivaletta, N., López-García, P., Boihem, L. & Barbieri, R. (2010). Biomarkers of endolithic communities within gypsum crusts (southern Tunisia). Geomicrobiol. J. 27, 101110.CrossRefGoogle Scholar
Squyres, S.W. et al. (2004). In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 306, 17091714.CrossRefGoogle ScholarPubMed
Squyres, S.W. et al. (2012). Ancient impact and aqueous processes at Endeavour Crater, Mars. Science 336, 570576.CrossRefGoogle ScholarPubMed
Summons, R.E., Amend, J.P., Bish, D., Buick, R., Cody, G.D., Des Marais, D.J., Bromart, G., Eigenbrode, J.L., Knoll, A.H. & Sumner, D.Y. (2011). Preservation of martian organic and environmental records: final report of the Mars biosignature working group. Astrobiology 11(2), 157181.CrossRefGoogle ScholarPubMed
Suo, Z., Avci, R., Schweitzer, M.H. & Deliorman, M. (2007). Porhyrin as an ideal biomarker in the search for Extraterrestrial Life. Astrobiology 7(4), 605615.CrossRefGoogle Scholar
Taiz, L. & Zeiger, E. (2010). Photosynthesis: the light reactions. In Plant Physiology, 5th edn. Sinaur Associates Inc., Sunderland, MA, USA. pp. 114.Google Scholar
Vishnivetskaya, T.A., Sprina, E.V., Shatilovich, A.V., Erokhina, L.G., Vorobyova, E.A. & Gilichinsky, D.A. (2003). The resistance of viable permafrost algae to simulated environmental stresses: implications for astrobiology. Int. J. Astrobiol. 2, 171177.CrossRefGoogle Scholar
Vreeland, R.H., Rosenzwelg, W.D. & Powers, D.W. (2000). Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407, 897900.CrossRefGoogle ScholarPubMed
Wardlaw, N.C., Stauffer, M.R. & Hoque, M. (1969). Striations, giants grooves, and superposed drag folds, Interlake area, Manitoba. Can. J. Earth Sci. 6(4), 577593.CrossRefGoogle Scholar
Weirzchos, J., Ascaco, C. & McKay, C. (2006). Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama desert. Astrobiology 6(4), 17.Google Scholar
Wray, J.J. et al. (2011). Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars. J. Geophys. Res. 116, 141.Google Scholar
Wynn-Williams, D.D., Edwards, H.G.M., Newton, E.M. & Holder, J.M. (2002). Pigmentation as a survival strategy for ancient and modern photosynthetic microbes under high ultraviolet stress on planetary surfaces. Int. J. Astrobiol. 1(1), 3949.CrossRefGoogle Scholar