Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T14:54:08.912Z Has data issue: false hasContentIssue false

Panspermia in the context of the timing of the origin of life and microbial phylogeny

Published online by Cambridge University Press:  09 July 2007

M.A. Line
Affiliation:
School of Agricultural Science, Tasmanian Institute of Agricultural Science, Private Bag 54, University of Tasmania, Hobart, Australia e-mail: [email protected]

Abstract

The synthesis of physical information on early Earth (or Mars) with recent knowledge arising from microbial genomic, proteomic and phylogenetic studies, strongly indicates that there was insufficient time (∼600 000 years) for life to arise and evolve to reach the biochemical complexity evident within the Last Common Community (LCC). If recent strong evidence of fossil cyanobacteria in carbonaceous meteorites is accepted, then the LCC would have existed prior to the origin of life on Earth and the planet would then have been seeded with representatives of the three domains once it became habitable. The existence of intermittently active cyanobacteria in comets opens the possibility for the evolution of microaerobic bacterial metabolism, elements of which appear at a deep level of the microbial phylogeny, at or below the depth of the LCC. It is also notable from a panspermia perspective that recent phylogenetic evidence indicates that the Gram-positive lineage (representatives of which are endowed with long-lived radiation-resistant spores) lies at the deepest level of domain Bacteria, with Archaea and Eukarya evolving from this lineage probably before 3.6 Gigayears ago (Gya).

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, D.L. & Trevors, J.T. (2005). Three subsets of sequence complexity and their relevance to biopolymeric information. Theor. Biol. Med. Model. 2, 29.CrossRefGoogle ScholarPubMed
Allen, D.A. & Wicramasinghe, D.T. (1981). Diffuse interstellar absorption bands between 2.9 and 4.0 μm. Nature 294, 239240.CrossRefGoogle Scholar
Allwood, A.C., Walter, M.R., Kamber, B.S., Marshall, C.P. & Burch, I.W. (2006). Stromatolite reef from the early Archaean era of Australia. Nature 441, 714718.CrossRefGoogle ScholarPubMed
Arrhenius, G. & Lepland, A. (2000). Accretion of Moon and Earth and the emergence of life. Chem. Geology 169, 6982.CrossRefGoogle Scholar
Bada, J.L., Bigham, C. & Miller, S.L. (1994). Impact melting of frozen oceans on the early Earth: implications for the origin of life. Proc. Natl Acad. Sci. USA 91, 12481250.CrossRefGoogle ScholarPubMed
Baymann, F., Lebrun, E., Brugna, M., Schoepp-Cothenet, B., Giudici-Orticoni, M.-T. & Nitschke, W. (2003). The redox protein construction kit: pre- last universal common ancestor evolution of energy-conserving enzymes. Phil. Trans. Royal Soc. B: Biol. Sci. 358, 267274.CrossRefGoogle ScholarPubMed
Bonner, W.A. (1995). Chirality and life. Origins Life Evol. Biosphere 25, 175190.CrossRefGoogle ScholarPubMed
Brasier, M.D., Green, O.R., Jephcoat, A.P., Kleppe, A.K., Van Kranendonk, M.J., Lindsay, J.F., Steele, A. & Grassineau, N.V. (2002). Questioning the evidence for Earth's oldest fossils. Nature 416, 7681.CrossRefGoogle ScholarPubMed
Brooks, J. & Shaw, G. (1969). Evidence for extraterrestrial life: identity of sporopollenin with the insoluble organic matter present in the Orgueil and Murray meteorites and also in some terrestrial microfossils. Nature 223, 754756.CrossRefGoogle Scholar
Brooks, J. & Shaw, G. (1978). A critical assessment of the origin of life. In Proc. 2nd ISSOL Meeting and 5th ICOL Meeting on the Origin of Life, Kyoto, Japan, 5–10 April, 1977, ed. Noda, H., pp. 597606.Google Scholar
Burchell, M.J. (2004). Panspermia today. Int. J. Astrobiol. 3, 7380.CrossRefGoogle Scholar
Burke, D.H., Hearst, J.E. & Sodow, A. (1993). Early origin of photosynthesis: clues from nitrogenase and chlorophyll iron proteins. Proc. Natl Acad. Sci. USA 90, 71347238.CrossRefGoogle Scholar
Castresana, J. & Moreira, D. (1999). Mars, panspermia and the origin of life: where did it all begin? J. Mol. Evol. 49, 453460.CrossRefGoogle Scholar
Cavalier-Smith, T. (2002). The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int. J. Syst. Evol. Microbiol. 52, 776.CrossRefGoogle ScholarPubMed
Chen, I.A., Roberts, R.W. & Szostak, J.W. (2004). The emergence of competition between model protocells. Science 305, 14741476.CrossRefGoogle ScholarPubMed
Chyba, C.F. & Hand, K.P. (2005). Astrobiology: the study of the living universe. Ann. Rev. Astron. Astrophys. 43, 3174.CrossRefGoogle Scholar
Ciccarelli, F.D., Doerks, T., von Mering, C., Creevey, C.J., Snel, B. & Bork, P. (2006). Towards automatic reconstruction of a highly resolved tree of life. Science 311, 12831287.CrossRefGoogle Scholar
Clifford, S.M. & Parker, T.J. (2001). The evolution of the Martian hydrosphere; implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154, 4079.CrossRefGoogle Scholar
Cline, D.B. (2005). On the physical origin of homochirality of life. European Rev. 13, 4959.CrossRefGoogle Scholar
Cohen, J. (1995). Getting all turned around over the origins of life on Earth. Science 267, 12651266.CrossRefGoogle ScholarPubMed
Cohen, B.A., Swindle, T.D. & Kring, D.A. (2000). Support for the Lunar cataclysm hypothesis from Lunar meteorite impact melt ages. Science 290, 17541756.CrossRefGoogle ScholarPubMed
Coulson, S.G. (2004). On panspermia and the survivability of micrometre-sized meteoroids within the Earth's atmosphere. Int. J. Astrobiol. 3, 151156.CrossRefGoogle Scholar
Cronin, J. & Reisse, J. (2006). From Prebiotic Chemistry to the Origin of Life on Earth (Lectures in Astrobiology, Vol. 1, Part 2), pp. 73115. Springer, Berlin.Google Scholar
Dalton, R. (2002). Microfossils: squaring up over ancient life. Nature 417, 782784.CrossRefGoogle Scholar
Davies, P. (1998). The Fifth Miracle: The Search for the Origin and Meaning of Life. Simon & Schuster Adult Publishing Group, New York.Google Scholar
Deamer, D.W. (1997). The first living systems: a bioenergetic perspective. Microbiol. Mol. Biol. Rev. 61, 239261.Google ScholarPubMed
Dworkin, J.P., Lazcano, A. & Miller, S.L. (2003). The roads to and from the RNA world. J. Theor. Biol. 222, 127134.CrossRefGoogle ScholarPubMed
Embley, T.M. & Martin, W. (2006). Eukaryotic evolution, changes and challenges. Nature 440, 623630.CrossRefGoogle ScholarPubMed
Fani, R., Gallo, R. & Liò, P. (2000). Molecular evolution of nitrogen fixation: the evolutionary history of the nifD, nifK, nifE, and nifN genes. J. Mol. Evol. 51, 111.CrossRefGoogle ScholarPubMed
Freeland, S.J., Knight, R.D., Landweber, L.F. & Hurst, L.D. (2000). Early fixation of an optimal genetic code. Mol. Biol. Evol. 17, 511518.CrossRefGoogle ScholarPubMed
Furnes, H., Banerjee, N.R., Muehlenbachs, K., Staudigel, H. & de Wit, M. (2004). Early life recorded in Archean pillow lavas. Science 304, 578581.CrossRefGoogle ScholarPubMed
Garrett, R. (1999). Mechanics of the ribosome. Nature 400, 811812.CrossRefGoogle ScholarPubMed
Griffiths, E. & Gupta, S. (2004). Signature sequences in diverse proteins provide evidence for the late divergence of the order Aquificales. Internat. Microbiol. 7, 4152.Google ScholarPubMed
Halliday, A.N. (2001). In the beginning … Nature 409, 144145.CrossRefGoogle Scholar
Hoover, R.B. (2006). Microfossils in carbonaceous meteorites. Proc. Int. Conf. on Cosmic Dust and Panspermia. Progress Towards Unravelling our Cosmic Ancestry, Cardiff University, Wales, 5–8 September, 2006.Google Scholar
Horneck, G., Rettberg, P., Reitz, G., Wehner, J., Eschweiler, U., Strauch, K., Panitz, C., Starke, V. & Baumstark-Khan, C. (2001). Protection of bacterial spores in space, a contribution to the discussion on panspermia. Origins Life Evol. Biosphere 31, 527547.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, C. (1980). The Origin of Life. University College Press, Cardiff.Google Scholar
Hoyle, F. & Wickramasinghe, C. (1999a). Comets: a vehicle for panspermia. Astrophys. Space Sci. 268, 333341. (Originally published in 1981.)CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, C. (1999b). On the nature of interstellar grains. Astrophys. Space Sci. 268, 249261.CrossRefGoogle Scholar
Hoyle, F., Wickramasinghe, C., Al-Mufti, S., Olavesen, A.H. & Wickramasinghe, D.T. (1982). Infrared spectroscopy over the 2.9–3.9 μm waveband in biochemistry and astronomy. Astrophys. Space Sci. 83, 405409.CrossRefGoogle Scholar
Hoyle, F., Wickramasinghe, C. & Hoyle, B. (1981). Space Travellers: The Bringers of Life. University College Press, Cardiff.Google Scholar
Johnston, W.K., Unrau, P.J., Lawrence, M.S., Glasner, M.E. & Bartel, D.P. (2001). RNA-catalysed RNA polymerization: accurate and general RNA-templated primer extension. Science 292, 13191325.CrossRefGoogle Scholar
Keszthelyi, L. (2001). Homochirality of biomolecules: counter-arguments against critical notes. Origins Life Evol. Biosphere 31, 249256.CrossRefGoogle ScholarPubMed
Kirschvink, L. & Weiss, B. (2001). Mars, panspermia, and the origin of life: where did it all begin? http://epe.lac-bac.gc.ca/100/201/300/palaeontologia/03-12-19/2001_2/editor/mars.pdf (viewed 16 October 2006).Google Scholar
Koch, A.L. (1994). Development and diversification of the Last Universal Ancestor. J. Theor. Biol. 168, 269280.CrossRefGoogle ScholarPubMed
Koch, A.L. (2000). The bacterium's way for safe enlargement and division. Appl. Environ. Microbiol. 66, 36573663.CrossRefGoogle ScholarPubMed
Koch, A.L. (2003). Were Gram-positive rods the first bacteria? Trends Microbiol. 11, 166170.CrossRefGoogle ScholarPubMed
Kurland, C.G., Collins, L.J. & Penny, D. (2006). Genomics and the irreducible nature of eukaryotic cells. Science 312, 10111014.CrossRefGoogle Scholar
Kyrpides, N., Overbeek, R. & Ouzounis, C. (1999). Universal protein families and the functional content of the Last Universal Common Ancestor. J. Mol. Evol. 49, 413423.CrossRefGoogle ScholarPubMed
Lahav, N., Nir, S. & Elitzur, A.C. (2001). The emergence of life on Earth. Prog. Biophys. Mol. Biol. 75, 75120.CrossRefGoogle ScholarPubMed
Lazcano, A. & Miller, S.L. (1994). How long did it take for life to begin and evolve to cyanobacteria? Biomed. Life Sci. 39, 1432.Google ScholarPubMed
Lepland, A., van Zuilen, M.A., Arrhenius, G., Whitehouse, M.J. & Fedo, C.M. (2005). Questioning the evidence for Earth's earliest life – Akilia revisited. Geology 33, 7779.CrossRefGoogle Scholar
Line, M.A. (2002). The enigma of the origin of life and its timing. Microbiology 148, 2127.CrossRefGoogle ScholarPubMed
Line, M.A. (2005). A hypothetical pathway from the RNA to the DNA world. Origins Life Evol. Biosphere 35, 395400.CrossRefGoogle Scholar
Liu, S. & Fraser, D.G. (2006). The adsorption of biomolecules on mineral surfaces and possible implications for the origin of life. Geophys. Res. Abstracts 8, 06768.Google Scholar
Luisi, P.L., Walde, P. & Oberholzer, T. (1999). Lipid vesicles as possible intermediates in the origin of life. Current Opinion Colloids Interface Sci. 4, 3339.CrossRefGoogle Scholar
Maurel, M.-C. & Haenni, A.-L. (2006). From Prebiotic Chemistry to the Origin of Life on Earth (Lectures in Astrobiology, Vol. 1, Part 2), pp. 171194. Springer, Berlin.Google Scholar
McCollom, T.M. & Seewald, J.S. (2006). Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. http://hdl.handle.net/1912/878 (viewed 16 November 2006).Google Scholar
Mileikowsky, C., Cucinotta, F.A., Wilson, J.W. & Gladman, B. (2000). Natural transfer of viable microbes in space. Icarus 145, 391427.CrossRefGoogle ScholarPubMed
Mojzsis, S.J., Harrison, T.M. & Pidgeon, R.T. (2001). Oxygen-isotopic evidence from ancient zircons for liquid water at the Earth's surface 4,300 Mya. Nature 409, 178181.CrossRefGoogle Scholar
Napier, W.M. (2004). A mechanism for interstellar panspermia. Mon. Not. R. Astron. Soc. 348, 46.CrossRefGoogle Scholar
Nisbet, E.G. & Sleep, N.H. (2001). The habitat and nature of early life. Nature 409, 10831091.CrossRefGoogle ScholarPubMed
Noffke, N., Eriksson, K.A., Hazen, R.M. & Simpson, E.L. (2006). A new window into early Archean life: microbial mats in Earth's oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology 34, 253256.CrossRefGoogle Scholar
Oparin, A.I., Braunshtein, A.E., Pasynskii, A.G. & Pavlovskaya, T.E. (eds) (1957). Proc. 1st Int. Symp. on the Origin of Life on Earth. Pergamon Press, New York.Google Scholar
Orgel, L.E. (1986). RNA catalysis and the origins of life. J. Theor. Biol. 123, 127149.CrossRefGoogle ScholarPubMed
Orgel, L.E. (1998). The origin of life – a review of facts and speculations. Trends Biochem Sci. 23, 491495.CrossRefGoogle ScholarPubMed
Ourisson, G. & Nakatani, Y. (2006). From Prebiotic Chemistry to the Origin of Life on Earth (Lectures in Astrobiology, Vol. 1, Part 2), pp. 2948. Springer, Berlin.Google Scholar
Ranea, J.A.G., Sillero, A., Thornton, J.M. & Orengo, C.A. (2006). Protein superfamily evolution and the Last Universal Common Ancestor (LUCA). J. Mol. Evol. 63, 513523.CrossRefGoogle ScholarPubMed
Ribó, J.M., Crusats, J., Sagués, F., Claret, J. & Rubires, R. (2001). Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science 292, 20632066.CrossRefGoogle ScholarPubMed
Russell, M.J. & Hall, A.J. (1997). The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. London 154, 377402.CrossRefGoogle Scholar
Sandars, P.G.H. (2003). A toy model for the generation of homochirality during polymerisation. Origins Life Evol. Biosphere 33, 575587.CrossRefGoogle Scholar
Schoenberg, R., Kamber, B.S., Collerson, K.D. & Moorbath, S. (2002). Nature 418, 403405.CrossRefGoogle Scholar
Schopf, J.W., Kudryavtsev, A.B., Agresti, D.G., Wdowiak, T.J. & Czaja, A.D. (2002). Laser-Raman imagery of Earth's earliest fossils. Nature 416, 7376.CrossRefGoogle ScholarPubMed
Secker, J., Wesson, P.S. & Lepock, J.R. (1996). Astrophysical and biological constraints on radiopanspermia. Astron. Soc. Canada 90, 184192.Google ScholarPubMed
Segré, D., Ben-Eli, D., Deamer, D.W. & Lancet, D. (2001). The lipid world. Origins Life Evol. Biosphere 31, 119145.CrossRefGoogle ScholarPubMed
Shapiro, R. (1999). Prebiotic cytosine synthesis: a critical analysis and implications for the origin of life. Proc. Natl Acad. Sci. USA 96, 43964401.CrossRefGoogle ScholarPubMed
Shen, Y., Buick, R. & Canfield, D.E. (2001). Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410, 7781.CrossRefGoogle ScholarPubMed
Strom, R.G., Malhotra, R., Ito, T., Yoshida, F. & Kring, D.A. (2005). The origin of planetary impactors in the inner Solar System. Science 309, 18471849.CrossRefGoogle ScholarPubMed
Szabó, P., Scheuring, I., Czárán, T. & Szathmáry, E. (2002). In silico simulations reveal that replicators with limited dispersal evolve towards higher efficiency and fidelity. Nature 420, 340343.CrossRefGoogle ScholarPubMed
Szostak, J.W., Bartel, D.P. & Luigi, Luisi P. (2001). Synthesizing life. Nature 409, 387390.CrossRefGoogle ScholarPubMed
Tice, M.M. & Lowe, D.R. (2004). Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431, 549552.CrossRefGoogle Scholar
Toxvaerd, S. (2005). Origin of homochirality in biological systems. Int. J. Astrobiol. 4, 4348.CrossRefGoogle Scholar
Trevors, J.T. (2002). The subsurface origin of microbial life on the Earth. Res. Microbiol. 153, 487491.CrossRefGoogle ScholarPubMed
Trevors, J.T. (2003). Early assembly of cellular life. Prog. Biophys. Mol. Biol. 81, 201217.CrossRefGoogle ScholarPubMed
Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S. & Isozaki, Y. (2006). Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440, 516519.CrossRefGoogle ScholarPubMed
Wächtershäuser, G. (1997). The origin of life and its methodological challenge. J. Theor. Biol. 187, 483494.CrossRefGoogle ScholarPubMed
Wächtershäuser, G. (2000). Life as we don't know it. Science 289, 13071308.CrossRefGoogle ScholarPubMed
Wallis, M.K. & Wickramasinghe, N.C. (2004). Interstellar transfer of planetary microbiota. Mon. Not. R. Astron. Soc. 348, 5261.CrossRefGoogle Scholar
Wickramasinghe, C. (2006). The spread of life throughout the cosmos. In The Future of Life and the Future of our Civilization, ed. Burdyuzha, V.Springer, Dordrecht.Google Scholar
Wickramasinghe, N.C., Brooks, J., Shaw, G. & Hoyle, F. (1977). Prebiotic polymers and infrared spectra of galactic sources. Nature 269, 674676.CrossRefGoogle Scholar
Wickramasinghe, N.C., Wainwright, M., Narlikar, J.V., Rajaratnam, P., Harris, M.J. & Lloyd, D. (2003). Progress toward the vindication of panspermia. Astrophys. Space Sci. 283, 403413.CrossRefGoogle Scholar
Yeomans, D.K. (2005). Impressions of our Solar System. Science 310, 785.CrossRefGoogle Scholar