Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T05:32:39.389Z Has data issue: false hasContentIssue false

Optimal measures for characterizing water-rich super-Earths

Published online by Cambridge University Press:  29 October 2014

Nikku Madhusudhan*
Affiliation:
Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK
Seth Redfield
Affiliation:
Astronomy Department, Van Vleck Observatory, Wesleyan University, Middletown, CT 06459, USA

Abstract

The detection and atmospheric characterization of super-Earths is one of the major frontiers of exoplanetary science. Currently, extensive efforts are underway to detect molecules, particularly H2O, in super-Earth atmospheres. In the present work, we develop a systematic set of strategies to identify and observe potentially H2O-rich super-Earths that provide the best prospects for characterizing their atmospheres using existing instruments. First, we provide analytic prescriptions and discuss factors that need to be taken into account while planning and interpreting observations of super-Earth radii and spectra. We discuss how observations in different spectral bandpasses constrain different atmospheric properties of a super-Earth, including radius and temperature of the planetary surface as well as the mean molecular mass, the chemical composition and thermal profile of the atmosphere. In particular, we caution that radii measured in certain bandpasses can induce biases in the interpretation of the interior compositions. Second, we investigate the detectability of H2O-rich super-Earth atmospheres using the Hubble Space Telescope Wide Field Camera 3 spectrograph as a function of the planetary properties and stellar brightness. We find that highly irradiated super-Earths orbiting bright stars, such as 55 Cancri e, present better candidates for atmospheric characterization compared to cooler planets such as GJ 1214b even if the latter orbit lower-mass stars. Besides being better candidates for both transmission and emission spectroscopy, hotter planets offer higher likelihood of cloud-free atmospheres which aid tremendously in the observation and interpretation of spectra. Finally, we present case studies of two super-Earths, GJ 1214b and 55 Cancri e, using available data and models of their interiors and atmospheres.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, Y., Abe-Ouchi, A., Sleep, N. H. & Zahnle, K. J. (2011). Astrobiology 11, 443.Google Scholar
Atreya, S. K. (2010). Atmospheric Moons Galileo would have loved. Galileo's Medicean Moons  –  their impact on 400 Years of Discovery. (Barbieri, C. et al. eds.), Proc. IAU Symp. No. 269, Cambridge University Press, Cambridge.Google Scholar
Barclay, T. et al. (2013). Astrophys. J. 768, 101.Google Scholar
Batalha, N. et al. (2011). Astrophys. J. 729, 27.Google Scholar
Bean, J.L., Miller-Ricci Kempton, E. & Homeier, D. (2010). Nature 468, 669.Google Scholar
Bean, J. et al. (2011). Astrophys. J. 743, 92.Google Scholar
Belu, A. R. et al. (2011). Astron. Astrophys.. 525, A83.Google Scholar
Belu, A. R. et al. (2013). Astrophys. J. 768, 125.Google Scholar
Bennekke, B. & Seager, S. (2012). Astrophys. J. 753, 100.CrossRefGoogle Scholar
Bennekke, B. & Seager, S. (2013). arXiv:1306.6325B.Google Scholar
Berta, Z. et al. (2012). Astrophys. J. 747, 35.Google Scholar
Borucki, W. J. et al. (2013). Science 340, 587.Google Scholar
Broeg, C. et al. (2013). Hot planets and cool stars, Garching, Germany ed. Roberto, Saglia, EPJ Web Conf., 47, 03005 (arXiv:1305.2270)Google Scholar
Castan, T. & Menou, K. (2011). Astrophys. J. 743, L36.Google Scholar
Charbonneau, D. et al. (2009). Nature 462, 891.Google Scholar
Croll, B. et al. (2011). Astrophys. J. 736, 78.Google Scholar
de Mooij, E. J. W. et al. (2012). Astron. Astrophys.. 538, 46.CrossRefGoogle Scholar
Deming, D. et al. (2013). Astrophys. J. 774, 95.Google Scholar
Demory, B-O. et al. (2011) Astron. Astrophys.. 533, A114.CrossRefGoogle Scholar
Demory, B-O. et al. (2012). Astrophys. J. 751, L28.Google Scholar
Désert, J.-M. et al. (2011). Astrophys. J. 731, L40.Google Scholar
Dragomir, D. et al. (2013). Astrophys. J. 772, L2.Google Scholar
Ehrenreich, et al. (2012). Astron. Astrophys.. 547, A18.Google Scholar
Endl, M. et al. (2012). Astrophys. J. 759, 19.Google Scholar
Fortney, J. J., Marley, M. S., Barnes, J. W. (2007) Astrophys. J. 659, 1661.Google Scholar
Fressin, F. et al. (2013). Astrophys. J. 766, 81.Google Scholar
Gillon, M. et al. (2012). Astron. Astrophys.. 539, A28.Google Scholar
Gillon, M. et al. (2014). A&A, 563A, 21Google Scholar
Gillon, M., Jehin, E., Fumel, A., Magain, P., Queloz, D. (2013). Hot planets and cool stars, Garching, Germany, ed. Saglia, R., EPJ Web Conf., 47, id.03001Google Scholar
Gong, Y-X. & Zhou, J-L. (2012). Res. Astron. Astrophys.. 12(6), 678.CrossRefGoogle Scholar
Hedelt, P. et al. (2013). Astron. Astrophys.. 553, A9.Google Scholar
Heng, K. & Kopparla, P. (2012). Astrophys. J. 754, 60.Google Scholar
Howard, A. et al. (2012) Astrophys. J Suppl. 201, 15.Google Scholar
Howe, A. & Burrows, A. (2012) Astrophys. J. 756, 176.Google Scholar
Kaltenegger, L. & Traub, W. (2009). 698, 519.Google Scholar
Kaltenegger, L., Sasselov, D. & Rugheimer, S. (2013). Astrophys. J. 775, L47Google Scholar
Kasting, J. F. (1993). 101, 108.CrossRefGoogle Scholar
Kempton, E., Zahnle, K. & Fortney, J. J. (2012). Astrophys. J. 745, 3.Google Scholar
Kipping, D. M., Spiegel, D. S. & Sasselov, D. D. (2013). Mon. Not. R. Astron. Soc., 434, 1883.Google Scholar
Kopparapu, R. K. et al. (2013a) Astrophys. J. 765, 131.Google Scholar
Kopparapu, R. K. et al. (2013b). Astrophys. J. 770, 82.Google Scholar
Kreidberg, L. et al. (2014). Nature 505, 69.Google Scholar
Lee, J.-M., Fletcher, L. N. & Irwin, P. G. J. (2012). Mon. Not. R. Astron. Soc. 420, 170.Google Scholar
Leger, A. et al. (2009). Astron. Astrophys.. 506, 287.Google Scholar
Line, M. et al. (2012). Astrophys. J. 749, 93.Google Scholar
Lodders, K. (2002). Astrophys. J. 577, 974.CrossRefGoogle Scholar
Madhusudhan, N. (2012). Astrophys. J. 758, 36.Google Scholar
Madhusudhan, N. & Seager, S. (2009). Astrophys. J. 707, 24.Google Scholar
Madhusudhan, N. & Seager, S. (2011). Astrophys. J. 729, 41.Google Scholar
Madhusudhan, N. et al. (2011). Nature 469, 64.Google Scholar
Madhusudhan, N. et al. (2012). Astrophys. J. 759, L40.Google Scholar
Marley, M. S., Ackerman, A. S., Cuzzi, J. N. & Kitzmann, D. (2013). In comparative climatology of terrestrial planets (eds. Mackwell, Stephen J., Simon-Miller, Amy A., Harder, Jerald W., and Bullock, Mark A.), University of Arizona Press, Tucson, 610 pp., p. 367–391.Google Scholar
Moriarty, J., Madhusudhan, N. & Fischer, D. (2014). Astrophys. J. 787, 81.Google Scholar
Morley, C. V. et al. (2013). Astrophys. J. 775, 33.Google Scholar
Miller-Ricci, E. & Fortney, J. J. (2010). Astrophys. J. 716, L74.Google Scholar
Miller-Ricci, E., Seager, S. & Sasselov, D. (2009). Astrophys. J. 690, 1056.Google Scholar
Pickles, A. J. (1998). Publ. Astron. Soc. Pacific 110, 863.Google Scholar
Pont, F., Knutson, H., Gilliland, R. L., Moutou, C. & Charbonneau, D. (2008). Monthly Notices of the Royal Astronomical Society, 385, 109.Google Scholar
Quintana, E. et al. (2014). Science 344, 277.CrossRefGoogle Scholar
Rauer, H. et al. (2013). Experimental Astronomy, submitted (arXiv:1310.0696)Google Scholar
Ricker, G. et al. (2014). Proc. SPIE, Astronomical Telescopes + Instrumentation, submitted (arXiv:1406.0151).Google Scholar
Rogers, L. A. & Seager, S. (2010a). Astrophys. J. 712, 974.Google Scholar
Rogers, L. A. & Seager, S. (2010b). Astrophys. J. 716, 1208.Google Scholar
Seager, S., et al. (2007). Astrophys. J. 669, 1279.Google Scholar
Selsis, F. (2007). Lectures in Astrobiology, Advances in Astrobiology and Biogeophysics.. p. 199. Springer-Verlag, Berlin, Heidelberg, 2007.Google Scholar
Snellen, I., Stuik, R., Navarro, R., et al. (2012). Proc. SPIE 8444, 84440I.Google Scholar
Snellen, I. A. G. et al. (2013). Astrophys. J. 764, 182.Google Scholar
Sotin, C., Grasset, O. & Mocquet, A. (2007). Icarus 191, 337.Google Scholar
Spiegel, D. S., Silverio, K. & Burrows, A. (2009). Astrophys. J. 699, 1487.Google Scholar
Sudarsky, D., Burrows, A. & Hubeny, I. (2003). Astrophys. J. 588, 1121.Google Scholar
Valencia, D., O'Connell, R. J. & Sasselov, D. D. (2006). Icarus 181, 545.Google Scholar
Valencia, D., Ikoma, M., Guillot, T. & Nettelmann, N. (2010). Astron. Astrophys.. 516A, 20.Google Scholar
Valencia, D., Guillot, T., Parmentier, V. & Freedman, R. S. (2013). Astrophys. J. 775, 10.Google Scholar
von Braun, K. et al. (2011). Astrophys. J. 740, 49.Google Scholar
Wagner, F. W., Tosi, N., Sohl, F., Rauer, H. & Spohn, T. (2012). Astron. Astrophys.. 541, 103.Google Scholar
Winn, J. N. et al. (2011). Astrophys. J. 737, L18.CrossRefGoogle Scholar
Wright, J. T. et al. (2011). Publ. Astron. Soc. Pacific 123, 412.Google Scholar