Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T07:01:10.406Z Has data issue: false hasContentIssue false

On photolytic synthesis of sulphur-bearing organic molecules by reacting S or S2 with the hydrogen end-capped polyyne C10H2

Published online by Cambridge University Press:  10 August 2007

Dieter Heymann
Affiliation:
Departments of Chemistry and Earth Science, Mails Stop 126, Rice University, Houston, TX 77251-1892, USA e-mail: [email protected]

Abstract

The photolysis of dilute solutions of octacyclosulphur or hexacyclosulphur in n-hexane with 253.6 nm UV radiation produces S and possibly S2. The ‘ring-opening’ yields of these sulphur molecules range from 0.2 to 0.7. When the hydrogen end-capped polyyne C10H2 is irradiated in n-hexane, it transforms into unidentified products with a quantum yield of 3×10−5. When octacyclosulphur is added to the solution, the yield rises to 7×10−3. The putative sulphur-bearing product(s) could not be identified. It is suggested that sulphur-bearing molecules might be formed in astronomical settings by reactions of carbon molecules having triple or double C—C bonds with photolytically produced S and/or S2.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A'Hearn, M.F., Feldman, P.D. & Schleicher, D.G. (1983). Astrophys. J. Lett. 274, L99L103.CrossRefGoogle Scholar
Cataldo, F. (2000). Radiation Phys. Chem. 58, 217222.CrossRefGoogle Scholar
Cataldo, F. (2003). Carbon 41, 26712674.CrossRefGoogle Scholar
Cataldo, F. (2004). Fullerenes, Nanotubes Carbon Nanostruct. 12, 633646.CrossRefGoogle Scholar
Cataldo, F. & Heymann, D. (2001). Radiation Phys. Chem. 61, 115121.CrossRefGoogle Scholar
Cernicharo, J., Heras, A.M., Tielens, A.G.G.M., Pardo, J.R., Herpin, F., Guélin, M. & Waters, L.B.F.M. (2001). Astrophys. J. 546, L123L126.CrossRefGoogle Scholar
Coustenis, R., Bézard, B. & Gauthier, D. (1989). Icarus 80, 5476.CrossRefGoogle Scholar
Coustenis, A., Schmitt, B., Khanna, R.K. & Trotta, F. (1999). Planet. Space Sci. 47, 13051329.CrossRefGoogle Scholar
Eastmond, R., Johnson, T.R. & Walton, D.R.M. (1972). Tetrahedron 28, 46014616.CrossRefGoogle Scholar
Grim, R.J.A. & Greenberg, J.A. (1987). Astron. Astrophys. 181, 155168.Google Scholar
Hatchard, C.G. & Parker, C.A. (1956). Proc. R. Soc. London A 235, 518536.Google Scholar
Heymann, D., Cataldo, F., Thiemens, M.H., Fokkens, R., Nibbering, N.M.M. & Vis, R.D. (2000). Meteoritics Planet. Sci. 35, 355361.CrossRefGoogle Scholar
Irvine, W.M., Ohishi, M. & Kaifu, N. (1991). Icarus 91, 26.CrossRefGoogle Scholar
Lee, L.C. (1984). Astrophys. J. 282, 172177.CrossRefGoogle Scholar
Millefiori, S. & Alparone, A. (2001). J. Phys. Chem. A 105, 94899497.CrossRefGoogle Scholar
Moses, J.I., Bézard, B., Lellouch, E., Gladstone, G.R., Feuchtgruber, H. & Allen, M. (2000). Icarus 143, 244298.CrossRefGoogle Scholar
Richter, R.C., Rosendahl, A.R., Hynes, A.J. & Lee, E.P.F. (1998). J. Chem. Phys. 109, 88768886.CrossRefGoogle Scholar
Smith, D., Adams, N.G., Giles, K. & Herbst, E. (1988). Astron. Astrophys. 200, 191194.Google Scholar
Shindo, F., Benilan, Y., Guillemin, J.-C., Chaquin, P., Jolly, A. & Raulin, F. (2003). Planet. Space Sci. 51, 917.CrossRefGoogle Scholar
Steudel, R., Jensen, D., Goebel, P. & Hugo, P. (1988). Ber. Bunsen-Ges. Phys. Chem. 92, 118122.CrossRefGoogle Scholar
Strauss, E.M. & Steudel, R. (1987). Z. Naturforsch. 42b, 682690.CrossRefGoogle Scholar
Thaddeus, P., McCarthy, M.C., Travers, M.J., Gottlieb, C.A. & Chen, W. (1998). Faraday Discuss. 109, 121135.CrossRefGoogle Scholar
Vuitton, V., Gée, C., Raulin, F., Bénilan, Y., Crépin, C. & Gazeau, M.-C. (2003). Planet. Space Sci. 51, 847852.CrossRefGoogle Scholar