Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T01:57:38.575Z Has data issue: false hasContentIssue false

No effect of artificial gravity on lung function with exercise training during head-down bed rest

Published online by Cambridge University Press:  11 August 2015

Longxiang Su
Affiliation:
Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing 100853, China Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
Yinghua Guo
Affiliation:
Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing 100853, China
Yajuan Wang
Affiliation:
Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing 100853, China
Delong Wang
Affiliation:
Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing 100853, China
Changting Liu*
Affiliation:
Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing 100853, China

Abstract

The aim of this study is to explore the effectiveness of microgravity simulated by head-down bed rest (HDBR) and artificial gravity (AG) with exercise on lung function. Twenty-four volunteers were randomly divided into control and exercise countermeasure (CM) groups for 96 h of 6° HDBR. Comparisons of pulse rate, pulse oxygen saturation (SpO2) and lung function were made between these two groups at 0, 24, 48, 72, 96 h. Compared with the sitting position, inspiratory capacity and respiratory reserve volume were significantly higher than before HDBR (0° position) (P < 0.05). Vital capacity, expiratory reserve volume, forced vital capacity, forced expiratory volume in 1 s, forced inspiratory vital capacity, forced inspiratory volume in 1 s, forced expiratory flow at 25, 50, and 75%, maximal mid-expiratory flow and peak expiratory flow were all significantly lower than those before HDBR (P < 0.05). Neither control nor CM groups showed significant differences in pulse rate, SpO2, pulmonary volume and pulmonary ventilation function over the HDBR observation time. Postural changes can lead to variation in lung volume and ventilation function, but a HDBR model induced no changes in pulmonary function and therefore should not be used to study AG countermeasures.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Astakhov, D.A., Baranov, M.V. & Panchenkov, D.N. (2012). Patologicheskaia fiziologiia i eksperimental'naia terapiia, (2), 7076.Google Scholar
Bettinelli, D., Kays, C., Bailliart, O., Capderou, A., Techoueyres, P., Lachaud, J.L., Vaida, P. & Miserocchi, G. (2002). J. Appl. Physiol. 93(6), 20442052.Google Scholar
Elliott, A.R., Prisk, G.K., Guy, H.J. & West, J.B. (1994). J. Appl. Physiol. 77(4), 20052014.CrossRefGoogle Scholar
Elliott, A.R., Prisk, G.K., Guy, H.J., Kosonen, J.M. & West, J.B. (1996). J. Appl. Physiol. 81(1), 3343.Google Scholar
Fowler, J.F. Jr. (1991). Cutis; Cutan. Med. Practitioner 48(4), 291295.Google Scholar
Grigoriev, A.I. & Egorov, A.D. (1992). Adv. Space Biol. Med. 2, 4382.Google Scholar
Grindeland, R.E., Ballard, R.W., Connolly, J.P. & Vasques, M.F. (1992). J. Appl. Physiol. 73(2 Suppl), 1S3S.Google Scholar
Guo, Y. et al. (2013). Clin. Physiol. Funct. Imaging 33(1), 2429.Google Scholar
Koloteva, M.I., Lukianiuk, V.Y., Vil-Viliams, I.F. & Kotovskaya, A.R. (2004). J. Gravit. Physiol.: J. Int. Soc. Gravit. Physiol. 11(2), P101P102.Google Scholar
Montmerle, S., Spaak, J. & Linnarsson, D. (2002). J. Appl. Physiol. 92(1), 7583.Google Scholar
Paiva, M., Estenne, M. & Engel, L.A. (1989). J. Appl. Physiol. 67(4), 15421550.Google Scholar
Prisk, G.K. (2005). Clin. Chest Med. 26(3), 415438, vi.Google Scholar
Prisk, G.K., Guy, H.J., Elliott, A.R. & West, J.B. (1994). J. Appl. Physiol. 76(4), 17301738.Google Scholar
Prisk, G.K., Elliott, A.R., Guy, H.J., Kosonen, J.M. & West, J.B. (1995). J. Appl. Physiol. 79(4), 12901298.Google Scholar
Prisk, G.K., Fine, J.M., Elliott, A.R. & West, J.B. (2002). Aviat. Space Environ. Med. 73(1), 816.Google Scholar
Prisk, G.K., Fine, J.M., Cooper, T.K. & West, J.B. (2006). J. Appl. Physiol. 101(2), 439447.Google Scholar
Prisk, G.K., Fine, J.M., Cooper, T.K. & West, J.B. (2008). Eur. J. Appl. Physiol. 103(6), 617623.Google Scholar
Riviere, D. (2009). Bulletin de l'Academie nationale de medecine 193(7), 16331644.Google Scholar
Sieck, G.C. (2000). J. Appl. Physiol. 89(1), 12.Google Scholar
Trappe, T., Trappe, S., Lee, G., Widrick, J., Fitts, R. & Costill, D. (2006). J. Appl. Physiol. 100(3), 951957.Google Scholar
Venturoli, D., Semino, P., Negrini, D. & Miserocchi, G. (1998). Acta Astronautica 42(1–8), 185204.Google Scholar
West, J.B., Elliott, A.R., Guy, H.J. & Prisk, G.K. (1997). JAMA: J. Am. Med. Assoc. 277(24), 19571961.Google Scholar
Wood, H.E., Levine, B.D. & Babb, T.G. (2009). Aviat. Space Environ. Med. 80(4), 395399.CrossRefGoogle Scholar
Yang, P., Frier, B.C., Goodman, L. & Duffin, J. (2007). Aviat. Space Environ. Med. 78(11), 10351041.Google Scholar