Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T19:20:29.547Z Has data issue: false hasContentIssue false

Micro-scale variations of iron isotopes in fossilized microorganisms

Published online by Cambridge University Press:  08 July 2008

Magnus Ivarsson*
Affiliation:
Department of Geology and Geochemistry, Stockholm University, Sweden
Seppo Gehör
Affiliation:
Department of Geology, University of Oulu, Finland
Nils G. Holm
Affiliation:
Department of Geology and Geochemistry, Stockholm University, Sweden

Abstract

Laser-ablation inductively coupled plasma mass spectroscopy analyses have been performed on carbonaceous filamentous structures that have been interpreted as fossilized microorganisms containing ~10–50 wt% Fe and on non-carbonaceous filamentous structures that have been interpreted to have been formed abiotically containing ~80 wt% Fe. The obtained laser-ablation profiles of the two structural types show a distinct difference in the iron isotopic variations. The centers of the carbonaceous filaments are enriched in 57Fe and 58Fe and depleted in 56Fe. The surficial parts of the filaments display an opposite behavior of the iron isotopes and are thus enriched in 56Fe and depleted in 57Fe and 58Fe. 54Fe usually follows 57Fe and 58Fe but in some cases it follows 56Fe instead. The outer, surficial parts enriched in 56Fe have been interpreted as iron oxides precipitated on the surfaces of the microorganisms as they mediate oxidation of the iron to achieve metabolic energy. The laser-ablation profiles of the abiotically formed non-carbonaceous filamentous structures do not show the same characteristics as the carbonaceous filaments but only irregular elevations of 56Fe. The characteristic profile patterns of the isotope variations in the microfossils suggest that microbially formed iron oxides may be enriched in 56Fe. If that is the case the isotopic profiles could be used to distinguish abiotically formed iron oxides from biologically formed oxides.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anand, M., Russell, S.S., Blackhurst, R.L. & Grady, M.M. (2006). Searching for signatures of life on mars: an Fe-isotope perspective. Philos. Trans. 361, 17151720.CrossRefGoogle ScholarPubMed
Anbar, A.D. (2004). Iron stable isotopes: beyond biosignatures. Earth Planet. Sci. Lett. 217, 223236.Google Scholar
Anbar, A.D., Roe, J.D., Barling, J. & Nealson, K.H. (2000). Nonbiological fractionation of iron isotopes. Science 288, 126128.Google Scholar
Balci, N., Bullen, T.D., Witte-Lien, K., Shanks, W.C., Motelica, M. & Mandernack, K.W. (2006). Iron isotope fractionation during microbially stimulated Fe(II) oxidation and Fe(III) precipitation. Geochim. Cosmochim. Acta 70, 622639.Google Scholar
Beard, B.L. & Johnson, C.M. (2004). Fe isotope variations in the modern and ancient Earth and other planetary bodies. In Geochemistry of Non-traditional Stable Isotopes (Reviews in Mineralogy and Geochemistry, vol. 55), eds Johnson, C.M., Beard, B.L. & Albarède, F., pp. 319357. Mineralogical Society of America.Google Scholar
Beard, B.L., Johnson, C.M., Cox, L., Sun, H., Nealson, K.H. & Aguilar, C. (1999). Iron isotope biosignatures. Science 285, 18891892.Google Scholar
Beard, B.L., Johnson, C.M., Skulan, J.L., Nealson, K.H., Cox, L. & Sun, H. (2003). Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chem. Geol. 195, 87117.Google Scholar
Boyd, T.D. and Scott, S.D. (2001). Microbial and hydrothermal aspects of ferric oxyhydroxides and ferrosic hydroxides: the example of Franklin Seamount, Western Woodlark Basin, Papua New Guinea. Geochem. Trans. 2, 45.CrossRefGoogle Scholar
Brantley, S.L., Liermann, L.J., Guynn, R.L., Anbar, A., Icopini, G.A. & Barling, J. (2004). Fe isotopic fractionation during mineral dissolution with and without bacteria. Geochim. Cosmochim. Acta 68, 31893204.CrossRefGoogle Scholar
Brasier, M.D., Green, O.R., Jephcoat, A.P., Kleppe, A.K., Van Kranendonk, M.J., Lindsay, J.F., Steele, A. & Grassineau, N.V. (2002). Questioning the evidence for Earth's oldest fossils. Nature 416, 7681.Google Scholar
Brasier, M.D., Green, O.R., Lindsay, J.F., McLoughlin, N., Steele, A. & Stoakes, C. (2005). Critical testing of Earth's oldest putative fossil assemblage from the ~3.5 Ga Apex chert, Chinaman Creek, Western Australia. Precambr. Res. 140, 55102.CrossRefGoogle Scholar
Bullen, T.D., White, A.F., Childs, C.W., Vivit, D.V. & Schultz, M.S. (2001). Demonstration of significant abiotic iron isotope fractionation in nature. Geology 29, 699702.Google Scholar
Croal, L.R., Johnson, C.M., Beard, B.L. & Newman, D.K. (2004). Iron isotope fractionation by anoxygenic Fe(II)-phototrophic bacteria. Geochim. Cosmochim. Acta 68, 12271242.Google Scholar
Edwards, K.J., Bach, W. & McCollom, T.M. (2005). Geomicrobiology in oceanography: microbe-mineral interactions at and below the seafloor. Trends Microbiol. 13, 449456.Google Scholar
Edwards, K.J., Bach, W., McCollom, T. & Rogers, D.R. (2004). Neutrophilic iron-oxidizing bacteria in the ocean: Their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea. J. Geomicrobiol. 21, 393404.CrossRefGoogle Scholar
Edwards, K.J., Rogers, D.R., Wirsen, C.O. & McCollom, T.M. (2003). Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic α- and γ-Proteobacteria from the deep sea. Appl. Environ. Microbiol. 69, 29062913.CrossRefGoogle ScholarPubMed
Ehrlich, H.L. (1996). Geomicrobiology, 3rd edn, revised and expanded. Dekker, New York.Google Scholar
Emerson, D. & Moyer, C.L. (2002). Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition. Appl. Environ. Microbiol. 68, 30853093.CrossRefGoogle Scholar
Farmer, J.D. & Des Marais, D.J. (1999). Exploring for a record of ancient Martian life. J. Geophys. Res. 104, 26 97726 995.Google Scholar
Fisk, M.R., Giovannoni, S.J. & Thorseth, I.H. (1998). Alteration of oceanic volcanic glass: Textural evidence of microbial activity. Science 281, 978980.Google Scholar
Fisk, M.R., Storrie-Lombardi, M.C., Douglas, S., Popa, R., McDonald, G. & Di Meo-Savoie, C. (2003). Evidence of biological activity in Hawaiian subsurface basalts. Geochem. Geophys. Geosyst. 4, 1103, doi:10.1029/2002GC000387.CrossRefGoogle Scholar
Furnes, H. & Staudigel, H. (1999). Biological mediation in ocean crust alteration: how deep is the deep biosphere? Earth Planet. Sci. Lett. 166, 97103.Google Scholar
Furnes, H., Banerjee, N.R., Muehlenbachs, K., Staudigel, H. & de Wit, M. (2004). Early life recorded in Archean pillow lavas. Science 304, 578581.CrossRefGoogle ScholarPubMed
Furnes, H., Muehlenbachs, K., Tumyr, O., Torsvik, T. & Xenophontos, C. (2001). Biogenic alteration of volcanic glass from the Trodos ophiolite, Cyprus. J. Geol. Soc. Lond. 158, 7584.CrossRefGoogle Scholar
Furnes, H., Thorseth, I.H., Tumyr, O., Torsvik, T. & Fisk, M.R. (1996). Microbial activity in the alteration of glass from pillow lavas from hole 896A. Proc. Ocean Drilling Program, Scientific Results 148, 191206.Google Scholar
Garcia-Ruiz, J.M., Hyde, S.T., Carnerup, A.M., Christy, A.G., Van Krankendonk, M.J. & Welham, N.J. (2003). Self-assembled silica-carbonate structures and detection of ancient microfossils. Science 302, 11941197.Google Scholar
Ghiorse, W.C. (1984). Biology of iron- and manganese-depositing bacteria. Annu. Rev. Microbiol. 38, 515550.Google Scholar
Gibson, E.K, McKay, D.S., Thomas-Keprta, K.L., Wentworth, S.J., Westall, F., Steele, A., Romanek, C.S., Bell, M.S. & Toporski, J. (2001). Life on mars: evaluation of the evidence within martian meteorites ALH84001, Nakhla, and Shergotty. Precambr. Res. 106, 1534.Google Scholar
Giovannoni, S.J., Fisk, M.R., Mullins, T.D. & Furnes, H. (1996). Genetic evidence for endolithic microbial life colonizing basaltic glass-seawater interfaces. Proc. Ocean Drilling Program, Scientific Results 148, 207214.Google Scholar
Hyde, S.T., Carnerup, A.M., Larsson, A.-K., Christy, A.G. & Garcia-Ruiz, J.M. (2004). Self-assembly of carbonate-silica colloids: Between living and non-living form. Physica A 339, 2433.Google Scholar
Icopini, G.A., Anbar, A.D., Ruebush, S.S., Tien, M. & Brantley, S.L. (2004). Iron isotope fractionation during microbial reduction of iron: The importance of adsorption. Geology 32, 205208.CrossRefGoogle Scholar
Ivarsson, M. (2006). Advantages of doubly polished thin sections for the study of microfossils in volcanic rock. Geochem. Trans. 7, 5.CrossRefGoogle Scholar
Ivarsson, M., Lindblom, S., Broman, S. & Holm, N.G. (2008). Fossilized microorganisms associated with zeolite-carbonate interfaces in sub-seafloor hydrothermal environments. Geobiology 6, 155170.CrossRefGoogle ScholarPubMed
Johnson, C.M. & Beard, B.L. (2006). Fe isotopes: An emerging technique for understanding modern and ancient biogeochemical cycles. GSA TODAY 16, 410.Google Scholar
Johnson, C.M., Beard, B.L., Roden, E.E., Newman, D.K. & Nealson, K.H. (2004). Isotopic constraints on biogeochemical cycling of Fe. In Geochemistry of Non-traditional Stable Isotopes (Reviews in Mineralogy and Geochemistry, vol. 55), eds Johnson, C.M., Beard, B.L. & Albarède, F., pp. 359408. Mineralogical Society of America.Google Scholar
Johnson, C.M., Roden, E.E., Welch, S.A. & Beard, B.L. (2005). Experimental constraints on Fe isotope fractionation during magnetite and Fe carbonate formation coupled to dissimilatory hydrous ferric oxide reduction. Geochim. Cosmochim. Acta 69, 963993.CrossRefGoogle Scholar
Johnson, C.M., Skulan, J.L., Beard, B.L., Sun, H., Nealson, K.H. & Braterman, P.S. (2002). Isotopic fractionation between Fe(III) and Fe(II) in aqueous solutions. Earth Planet. Sci. Lett. 195, 141153.CrossRefGoogle Scholar
Perfit, M.R., Cann, J.R., Fornari, D.J., Engels, J., Smith, D.K., Ridley, W.D. & Edwards, M.H. (2003). Interaction of sea water and lava during submarine eruptions at mid-ocean ridges. Nature 426, 6265.Google Scholar
Roe, J.E., Anbar, A.D. & Barling, J. (2003). Nonbiological fractionation of Fe isotopes: Evidence of an equilibrium isotope effect. Chem. Geol. 195, 6985.Google Scholar
Rogers, J.R. & Bennett, P.C. (2004). Mineral stimulation of subsurface microorganisms: Release of limiting nutrients from silicates. Chem. Geol. 203, 91108.Google Scholar
Schopf, J.W. (1993). Microfossils of the early Archean Apex Chert: new evidence of the antiquity of life. Science 260, 640646.Google Scholar
Schopf, J.W., Kudryavtsev, A.B., Agresti, D.G., Wdowiak, T.J. & Czaja, A.D. (2002). Laser-Raman imagery of Earth's earliest fossils. Nature 416, 7376.Google Scholar
Staudigel, H., Tebo, B., Yayanos, A., Furnes, H., Kelley, K., Plank, T. & Muehlenbachs, K. (2004). The oceanic crust as a bioreactor. In The Subseafloor Biosphere at Mid-Ocean Ridges (Geophysical Monograph, vol. 144), eds Wilcock, W.S.D., DeLong, E.F., Kelley, D.S., Baross, J.A. & Cary, S.C., pp. 325341. American Geophysical Union, Washington DC.Google Scholar
Tarduno, J.A., Duncan, R.A. & Scholl, D.W. (2002). Leg 197 summary. Proc. Ocean Drilling Program, Initial Reports 197, 192.Google Scholar
Thorseth, I.H., Pedersen, R.B. & Christie, D.M. (2003). Microbial alteration of 0-30-Ma seafloor basaltic glasses from the Australian Antarctic Discordance. Earth Planet. Sci. Lett. 215, 237247.Google Scholar
Thorseth, I.H., Torsvik, T., Furnes, H. & Muehlenbachs, K. (1995). Microbes play an important role in the alteration of oceanic crust. Chem. Geol. 126, 137146.CrossRefGoogle Scholar
Thorseth, I.H., Torsvik, T., Torsvik, V., Daae, F.L., Pedersen, R.B. & Keldysh-98 Scientific Party (2001). Diversity of life in ocean floor basalt. Earth Planet. Sci. Lett. 194, 3137.Google Scholar
Welch, S.A., Beard, B.L., Johnson, C.M. & Braterman, P.S. (2003). Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III). Geochim. Cosmochim. Acta 676, 42314250.Google Scholar