Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T00:23:54.288Z Has data issue: false hasContentIssue false

Longevity of moons around habitable planets

Published online by Cambridge University Press:  30 June 2014

Takashi Sasaki*
Affiliation:
Department of Physics, University of Idaho, Moscow, ID 83844-0903, USA
Jason W. Barnes
Affiliation:
Department of Physics, University of Idaho, Moscow, ID 83844-0903, USA

Abstract

We consider tidal decay lifetimes for moons orbiting habitable extrasolar planets using the constant Q approach for tidal evolution theory. Large moons stabilize planetary obliquity in some cases, and it has been suggested that large moons are necessary for the evolution of complex life. We find that the Moon in the Sun–Earth system must have had an initial orbital period of not slower than 20 h rev−1 for the moon's lifetime to exceed a 5 Gyr lifetime. We assume that 5 Gyr is long enough for life on planets to evolve complex life. We show that moons of habitable planets cannot survive for more than 5 Gyr if the stellar mass is less than 0.55 and 0.42 M for Qp=10 and 100, respectively, where Qp is the planetary tidal dissipation quality factor. Kepler-62e and f are of particular interest because they are two actually known rocky planets in the habitable zone. Kepler-62e would need to be made of iron and have Qp=100 for its hypothetical moon to live for longer than 5 Gyr. A hypothetical moon of Kepler-62f, by contrast, may have a lifetime greater than 5 Gyr under several scenarios, and particularly for Qp=100.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, J.W. & O'Brien, D.P. (2002). Astrophys. J. 575, 1087.CrossRefGoogle Scholar
Bills, B.G., Neumann, G.A., Smith, D.E. & Zuber, M.T. (2005). J. Geophys. Res. (Planets) 110, 7004.Google Scholar
Borucki, W.J. et al. (2013). Science 340, 587.CrossRefGoogle Scholar
Canup, R.M. (2012). Science 338, 1052.CrossRefGoogle Scholar
Canup, R.M. & Asphaug, E. (2001). Nature 412, 708.CrossRefGoogle Scholar
Counselman, C.C. III (1973). Astrophys. J. 180, 307.CrossRefGoogle Scholar
Ćuk, M. & Stewart, S.T. (2012). Science 338, 1047.CrossRefGoogle Scholar
de Pater, I. & Lissauer, J.J. (2001). Planetary Sciences. Cambridge University Press, Cambridge, MA. ISBN 0521482194.Google Scholar
Dobrovolskis, A.R. (2013). Icarus 226, 760.CrossRefGoogle Scholar
Dole, S.H. (1964). Habitable planets for man. Blaisdell Publishing Company.Google Scholar
Domingos, R.C., Winter, O.C. & Yokoyama, T. (2006). Mon. Not. R. Astron. Soc. 373, 1227.CrossRefGoogle Scholar
Egbert, G.D. & Ray, R.D. (2000). Nature 405, 775.CrossRefGoogle Scholar
Fortney, J.J., Marley, M.S. & Barnes, J.W. (2007). Astrophys. J. 659, 1661.CrossRefGoogle Scholar
Goldreich, P. & Soter, S. (1966). Icarus 5, 375.CrossRefGoogle Scholar
Goldreich, P. & Nicholson, P.D. (1977). Icarus 30, 301.CrossRefGoogle Scholar
Hansen, C.J. & Kawaler, S.D. (1994). Stellar Interiors. Physical Principles, Structure, and Evolution. Springer-Verlag.CrossRefGoogle Scholar
Hart, M.H. (1979). Icarus 37, 351.CrossRefGoogle Scholar
Hubbard, W.B. (1974). Icarus 23, 42.CrossRefGoogle Scholar
Joshi, M.M. & Haberle, R.M. (2012). Astrobiology 12, 3.CrossRefGoogle Scholar
Kopparapu, R.K., Ramirez, R., Kasting, J.F., Eymet, V., Robinson, T.D., Mahadevan, S., Terrien, R.C., Domagal-Goldman, S., Meadows, V. & Deshpande, R. (2013). Astrophys. J. 765, 131.CrossRefGoogle Scholar
Lambeck, K. (1980). The earth's variation: geophysical causes and consequences. Cambridge University Press.Google Scholar
Laskar, J. & Robutel, P. (1993). Nature 361, 608.CrossRefGoogle Scholar
Laskar, J., Joutel, F. & Robutel, P. (1993). Nature 361, 615.CrossRefGoogle Scholar
Lissauer, J.J., Barnes, J.W. & Chambers, J.E. (2012). Icarus 217, 77.CrossRefGoogle Scholar
Lourens, L.J., Wehausen, R. & Brumsack, H.J. (2001). Nature 409, 1029.CrossRefGoogle Scholar
Moore, W.B. & Schubert, G. (2000). Icarus 147, 317.CrossRefGoogle Scholar
Munk, W.H. & MacDonald, G.J.F. (1960). The rotation of the earth; a geophysical discussion. Cambridge University Press.Google Scholar
Murray, C.D. & Dermott, S.F. (2000). Solar System Dynamics. Cambridge University Press, NY.CrossRefGoogle Scholar
Ogilvie, G.I. & Lin, D.N.C. (2004). Astrophys. J. 610, 477.CrossRefGoogle Scholar
Ogilvie, G.I. & Lin, D.N.C. (2007). Astrophys. J. 661, 1180.CrossRefGoogle Scholar
Pahlevan, K. & Stevenson, D.J. (2007). Earth Planet. Sci. Lett. 262, 438.CrossRefGoogle Scholar
Ray, R.D., Eanes, R.J. & Lemoine, F.G. (2001). Geophys. J. Int. 144, 471.CrossRefGoogle Scholar
Sagan, C. & Dermott, S.F. (1982). Nature 300, 731.CrossRefGoogle Scholar
Sasaki, T., Barnes, J.W. & O'Brien, D.P. (2012). Astrophys. J. 754, 51.CrossRefGoogle Scholar
Shields, A.L., Meadows, V.S., Bitz, C.M., Pierrehumbert, R.T., Joshi, M.M. & Robinson, T.D. (2013). Astrobiology 13, 715.CrossRefGoogle Scholar
Stevenson, D.J. (1987). Ann. Rev. Earth Planet. Sci. 15, 271.CrossRefGoogle Scholar
Ward, W.R. & Reid, M.J. (1973). Mon. Not. R. Astron. Soc. 164, 21.CrossRefGoogle Scholar
Ward, P. & Brownlee, D. (2000). Rare Earth: Why Complex Life is Uncommon in the Universe. Copernicus, NY.CrossRefGoogle Scholar
Wiechert, U., Halliday, A.N., Lee, D.-C., Snyder, G.A., Taylor, L.A. & Rumble, D. (2001). Science 294, 345.CrossRefGoogle Scholar
Williams, D.M. & Kasting, J.F. (1997). Icarus 129, 254.CrossRefGoogle Scholar