Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T19:23:16.422Z Has data issue: false hasContentIssue false

Lithology, mineral assemblages and microbial fingerprints of the evaporite-carbonate sediments of the coastal sabkha of Abu Dhabi and their extraterrestrial implications

Published online by Cambridge University Press:  29 March 2010

Fadhil N. Sadooni
Affiliation:
Environmental Studies Center, Qatar University, P.O. Box 2713, Doha, Qatar e-mail: [email protected]
Fares Howari
Affiliation:
Environmental Science Program, The University of Texas of the Permian Basin, 4902 East University, Odessa, TX 79762, USA
Howell G.M. Edwards
Affiliation:
Chemical and Forensic Sciences, School of Life Sciences, University of Bradford, Bradford, BD7 1DO, UK
Ayman El-Saiy
Affiliation:
Department of Geology, United Arab Emirates University, P.O. Box 17551, Al-Ain, United Arab Emirates

Abstract

Deep-core and surface samples collected from the coastal sabkha of Abu Dhabi were subjected to a multi-proxy study, including petrographic, geochemical and spectroscopic analyses. The sediments studied are composed of biochemical carbonate-evaporite mineral suites, such as calcite, dolomite, aragonite and gypsum, as well as clastic minerals, such as quartz, feldspar and serpentine. These sediments were also strongly influenced by microbial activities as reflected by the presence of cyanobacterial mats, boring, gas bubble structures, pustular and other macro and micro textures. A combination of marine, fluvial, aeolian, and groundwater processes shaped the geomorphology of the area and led to the formation of such mineral suites, as well as their microbial contents. Data collected from Mars indicate that its surface regolith contains sandstone composed of siliciclastic basaltic debris, as well as carbonate (e.g. magnesite) and evaporite (e.g. jarosite and relics of gypsum) mineral assemblages. Additional data suggest the presence of geomorphic features, characteristic of an arid climate, such as sand dunes and desert varnish. The hydrological model for the Late Noachian-Hesperian period of the plant proposed the existence of a surficial layer containing endolithic and stromatolitic cyanobacterial lamina. The combination of the coastal sabkha of Abu Dhabi with its carbonate-evaporite mineral suites, the neighbouring sand dune fields of the Empty Quarter Desert and the basaltic sediments resulted from weathering the ophiolitic Northern Oman Mountains to form a candidate terrestrial geologic province that may explain the mineral association of Mars and its potential biosignatures. The lithological features and the mineral association of the sabkha can be recognized by the present day detection equipment used on Mars, and even if their biosignatures are degraded, their existence may be inferred from these features.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alsharhan, A.S. & Kendall, C.G.St.C. (2003). Earth Sci. Rev. 61, 191243.CrossRefGoogle Scholar
Andres, M., Summer, D.Y., Reid, R.P. & Swart, P.K. (2006). Geology 34, 973976.CrossRefGoogle Scholar
Aqrawi, A. & Sadooni, F. (1988). Contribution of the eolian fallout to the sediment budget in Khor Al-Zubair tidal flat, NW Arabian Gulf, South Iraq. In Proc. the 1st International Seminar on the Desert Environment, 116.Google Scholar
Bandfield, J.L., Glotch, T.D. & Christensen, P.R. (2003). Science 301, 10841087.Google Scholar
Barbieri, R., Stivaletta, N., Marinangeli, L. & Ori, G.G. (2006). Planet. Space Sci. 54, 726736.CrossRefGoogle Scholar
Benison, K.C. (2006). Geology 34, 385388.CrossRefGoogle Scholar
Bourke, M.C., Balme, M., Beyer, R.A., Beyer, R.A., Williams, K.K. & Zimbelman, J. (2006). Geomorphology 81, 440452.CrossRefGoogle Scholar
Butler, G.P. (1969). J. Sediment. Petrol. 39, 7089.Google Scholar
Cardoso, J.N., Watts, C.D., Maxwell, J.R., Goodfellow, R., Eglinton, G. & Golubics, S. (1978). Chem. Geol. 23, 273291.CrossRefGoogle Scholar
Chacón, E., Berrendero, E. & Garcia Pichel, F. (2006). Sediment. Geol. 185, 215228.CrossRefGoogle Scholar
Charaklis, W.G. & Marshall, K.C. (eds) (1990). Biofilms, p. 422. Wiley, New York.Google Scholar
Clark, B.C. et al. (2005). Earth Planet. Sci. Lett. 240, 7394.Google Scholar
Claudin, P. & Andreotti, B. (2006). Earth Planet. Sci. Lett. 252, 3044.CrossRefGoogle Scholar
DiGregorio, B.E. (2003). Rock varnish as a habitat for extant life on Mars. In Instrument, Methods, and Missions for Astrobiology IV, eds. Hoover, R.B., Levin, G.V., Paepe, R.R. & Rozanov, A.Y., pp. 120130. 2002. SPIE, Bellingham WA.Google Scholar
Edwards, H.G.M., Mohsin, M.A., Sadooni, F.N., Nik Hassan, N.F. & Munshi, T. (2006). Anal. Bioanal. Chem. 385, 4656.Google Scholar
Flood, B.E., Allen, C. & Longazo, T. (2003). Astrobiology 2, 608609.Google Scholar
Grotzinger, J.P. et al. (2006a). Earth Planet. Sci. Lett. 240, 1172.Google Scholar
Grotzinger, J. et al. (2006b). Geology 34, 10851088.CrossRefGoogle Scholar
Howari, F.M. (2006). Int. J. Astrobiol. 5, 4756.CrossRefGoogle Scholar
Kendall, C.G.St.C. & Skipwith, P. (1968). J. Sediment. Petrol. 38, 10401058.Google Scholar
Klingelhöfer, G. et al. (2004). Science 306, 17401745.CrossRefGoogle Scholar
Krumbein, W.E., Gorbushina, A.A. & Holtkamp-Tacken, E. (2004). Astrobiology 4, 450459.Google Scholar
Long, D.D., Fegan, N.E., McKee, J.D., Lyons, W.B., Hines, M.E. & Macumber, P.G. (1992). Chem. Geol. 96, 183202.CrossRefGoogle Scholar
Elwood Madden, E., Bodnar, R.J. & Rimstidt, J.D. (2004). Nature 431, 821823.Google Scholar
Mancinelli, R.L., Fahlen, T.F., Landheim, R. & Klovstad, M.R. (2004). Adv. Space Res. 33, 12441246.CrossRefGoogle Scholar
McKay, C.P. (1997). Orig. Life Evol. Biosph. 27, 263289.Google Scholar
McLennan, S.M. et al. (2005). Earth Planet. Sci. Lett. 240, 95–121.CrossRefGoogle Scholar
Noffke, N., Gerdes, G. & Klenk, Th. (2003). Earth Sci. Rev. 62, 163176.CrossRefGoogle Scholar
Park, R.K. (1977). Sedimentology 24, 485506.CrossRefGoogle Scholar
Shearman, D.J. (1963). Proc. Geol. Soc. Lond. 1607, 6365.Google Scholar
Squyres, S.W. & Knoll, A.H. (2005). Earth Planet. Sci. Lett. 240, 110.CrossRefGoogle Scholar
Teng, J. & Shen, J. (2008). Sci. China Earth Sci. 51, 3040.Google Scholar
Tosca, N.J. & McLennan, S.M. (2006). Earth Planet. Sci. Lett. 241, 2131.Google Scholar
Tosca, N.J. et al. (2006). Earth Planet. Sci. Lett. 240, 122148.CrossRefGoogle Scholar
Vreeland, R.H., Rosenzweig, W.D. & Powers, D.W. (2000). Nature 407, 897900.CrossRefGoogle Scholar