Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-01T06:04:04.675Z Has data issue: false hasContentIssue false

Laboratory simulation of UV irradiation from the Sun on amino acids. II. Irradiation of phenylalanine and tryptophan

Published online by Cambridge University Press:  09 August 2007

F. Scappini
Affiliation:
Istituto per lo Studio dei Materiali Nanostrutturati del C.N.R., Via P. Gobetti, 101, 40129 Bologna, Italy e-mail: [email protected]
M.L. Capobianco
Affiliation:
Istituto per la Sintesi Organica e la Fotoreattività del C.N.R., Via P. Gobetti, 101, 40129 Bologna, Italy
F. Casadei
Affiliation:
Istituto per lo Studio dei Materiali Nanostrutturati del C.N.R., Via P. Gobetti, 101, 40129 Bologna, Italy e-mail: [email protected]
R. Zamboni
Affiliation:
Istituto per lo Studio dei Materiali Nanostrutturati del C.N.R., Via P. Gobetti, 101, 40129 Bologna, Italy e-mail: [email protected]
P. Giorgianni
Affiliation:
Istituto per la Sintesi Organica e la Fotoreattività del C.N.R., Via P. Gobetti, 101, 40129 Bologna, Italy

Abstract

The effects of near ultraviolet (UV) irradiation on water solutions of phenylalanine and tryptophan have been investigated using a broad-band xenon lamp in the region 200–800 nm. This is a step in the laboratory simulation of the effects of Solar radiation on the building blocks of life, specifically α-amino acids, with regards to the origin of life. Results are presented showing the photodegradation of phenylalanine and tryptophan against different UV doses. Some of the degradation products are still protein amino acids. An analysis of the irradiated solutions is carried out by spectroscopic and analytic techniques. The laboratory simulations are discussed in the wake of a life emerging scenario on the primitive Earth.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bensasson, R.V., Land, E.J. & Truscott, T.G. (1983). Flash Photolysis and Pulse Radiolysis. Contributions to the Chemistry of Biology and Medicine. Pergamon Press, Oxford.Google Scholar
Berces, A., Kovacs, G., Ronto, G., Lammer, H., Kargel, G., Komlbe, N. & Bauer, S. (2003). EGS–AGU–EUG Joint Assembly, Abstracts from the meeting held in Nice, France, April 2003.Google Scholar
Brasier, M.D., Green, O.W., Jephcoat, A.P., Kleppe, A.K., Van Kranendonk, M.J., Lindsay, J.F., Steele, A. & Grassineau, N.V. (2002). Nature 416, 7681.CrossRefGoogle Scholar
Cecchi-Pestellini, C., Scappini, F., Saija, R., Iati, M.A., Giusto, A., Aiello, S., Borghese, F. & Denti, F. (2004). Int. J. Astrobiology 3(4), 287293.Google Scholar
Cockell, C. & Knowland, J. (1999). Biol. Chem. 74, 311345.Google Scholar
Creed, D. (1984). Photochem Photobiol. 39, 563575.CrossRefGoogle Scholar
Davies, M.J. & Truscott, R.J.W. (2001). J. Photochem. Phobiolol. B: Biol. 63, 114125.Google Scholar
Duley, W.W. (2000). Mon. Notices R. Astron. Soc. 319(3), 791796.CrossRefGoogle Scholar
Eherenfreund, P., Bernstein, M.P., Dworkin, J.P., Sandford, S.A. & Allamandola, L.J. (2001). Astrophys. J. 550, L95L99.Google Scholar
Haldane, J.B.S. (1929). Rationalist Ann. 1929, 148169.Google Scholar
Hecht, C., Bieler, S. & Griehl, C. (2005). J. Chromatography A 1088, 121125.CrossRefGoogle Scholar
Hill, R.R., Coyle, J.D., Birch, D., Dawe, E., Jeffs, G.E., Randal, D., Stec, I. & Stevenson, T.M. (1991). J. Amer. Chem. Soc. 113, 18051817.Google Scholar
Lammer, H., Ribas, I., Griessmeier, J.M., Penz, J., Hanslmeier, A. & Biernat, H.K. (2004). Hvar Obs. Bull. 23, 139155.Google Scholar
Margulis, S. (1970). The Origin of Life. Gordon & Breach, London.Google Scholar
Messerotti, M. & Chela Flores, J. (2005). European Geosciences Union General Assembly, Geophysical Research Abstracts, vol. 7, 07943.Google Scholar
Mulcahy, M., McInerney, J., Nikogosyan, D.N. & Görner, H. (2000). Biol. Chem. 381, 12591262.Google Scholar
Nikogosyan, D.N. & Görner, H. (1999) IEEE J. Selected Topics Quantum Elec. 5(4), 11071115.Google Scholar
O'Donnell, J.H. & Sangster, D.F. (1970). Principles of Radiation Chemistry. Edward Arnold, London.Google Scholar
Oparin, A.I. (1938). The Origin of Life. Macmillan, New York.Google Scholar
Sackmann, I.-J. & Boothroyd, A.I. (2003). Astrophys. J. 583, 10241039.Google Scholar
Scappini, F., Casadei, F., Zamboni, R., Monti, S., Giorgianni, P. & Capobianco, M.L. (2007). Int. J. Astrobiology 6(2), 123129.Google Scholar
Thrany, M.G., Lammer, H., Selsis, F., Ribas, I., Guinan, E.F. & Hanslmeier, A. (2002). Proc. 10th European Solar Physics Meeting, ed. Wilson, A. (ESA Special Publication 505), pp. 209212. ESA Publications Division, Noordwijk.Google Scholar
Zelik, M. & Gregory, S.A. (1998). Astronomy and Astrophysics. Sounders College Publishing, New York.Google Scholar