Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T22:58:21.721Z Has data issue: false hasContentIssue false

Humidity interaction of lichens under astrobiological aspects: the impact of UVC exposure on their water retention properties

Published online by Cambridge University Press:  17 February 2015

J. Jänchen*
Affiliation:
Technical University of Applied Sciences Wildau, Volmerstr. 13, 12489 Berlin, Germany
J. Meeßen
Affiliation:
Institute of Botany, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
T.H. Herzog
Affiliation:
Technical University of Applied Sciences Wildau, Volmerstr. 13, 12489 Berlin, Germany
M. Feist
Affiliation:
Institute of Chemistry, Humboldt University Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
R. de la Torre
Affiliation:
Department of Earth Observation, Spanish Institute for Aerospace Technology (INTA), Ctra. Ajalvir km 4.5, 28850Torrejónde Ardoz, Spain
J.-P.P. deVera
Affiliation:
Institute of Planetary Research, German Aerospace Center (DLR), Rutherfordstr. 2, 12489 Berlin, Germany

Abstract

We quantitatively studied the hydration and dehydration behaviour of the three astrobiological model lichens Xanthoria elegans, Buellia frigida and Circinaria gyrosa by thermoanalysis and gravimetric isotherm measurements under close-to-Martian environmental conditions in terms of low temperature and low pressure. Additionally, the impact of UVC exposure on the isolated symbionts of B. frigida and X. elegans was studied by thermoanalysis and mass spectrometry as well as by gravimetric isotherm measurements. The thermal analysis revealed whewellite as a component of C. gyrosa which was not found in B. frigida and X. elegans. Neither the water retention nor the thermal behaviour of symbionts changed when irradiated with UVC under dry conditions. On the other hand, UVC irradiation of the wet mycobiont of B. frigida had a distinct impact on the hydration/dehydration ability which was not observed for the mycobiont of X. elegans. Possibly the melanin of B. frigida's mycobiont, that is not present in X. elegans, or a specifically damaged acetamido group of the chitin of B. frigida may be the sources of additional UVC-induced sorption sites for water associated with the UVC exposure.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibring, J-P. et al. (2005). Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 307(5715), 15761581.Google Scholar
Böttger, U., Meeßen, J., de la Torre, R., Frias, J.M., Rull, F., Sánchez, F.J., Hüber, H.W. & de Vera, J.-P. (2013). Raman spectroscopic analysis of Circinariagyrosa as a candidate for BIOMEX. Int. J. Astrobiol. 13(1), 1927, doi: 10.17/S1473550413000293 CrossRefGoogle Scholar
Brandt, A., de Vera, J.-P., Onofri, S. & Ott, S. (2014). Viability of the lichen Xanthoriaelegans and its symbionts after 18 months of space exposure and simulated Mars conditions on the ISS. Int. J. Astrobiol., publ. online 2014, doi: 10.1017/s1473550414000214 Google Scholar
Briggs, G., Klaasen, K., Thorpe, T., Wellman, J. & Baum, W. (1977). Martian dynamical phenomena during June–November 1976: viking Orbiter imaging results. J Geophys. Res. 82(A28), 41214149.CrossRefGoogle Scholar
Christensen, P.R. (2006). Water at the poles and in permafrost regions of mars. Elements 2(3), 151155.Google Scholar
Dadachova, E., Bryan, R.A., Huang, X., Moadel, T., Schweitzer, A.D., Aisen, P., Nosanchuk, J.D. & Casdevall, A. (2007). Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PloS one. 2(5), e457.Google Scholar
Daum, G. (2005). Aerobe Deprotonierung von Crustacean-Abfällen zur Gewinnung von Chitin mittels proteolytischer Mikroorganismen, Thesis, University of Hamburg, 2005.Google Scholar
Davies, D.W. (1979). The relative humidity of Mars’ atmosphere. J. Geophys. Res. 84(B14), 83358340.Google Scholar
de la Torre, R., Sancho, L.G., Pintado, A., Rettberg, P., Rabbow, E., Panitz, C., Deutschmann, U., Reina, M. & Horneck, G. (2007). BIOPAN experiment LICHENS on the Foton M2 mission: pre-flight verification tests of the Rhizocarpongeographicum-granite ecosystem. Adv. Space Res. 40(11), 16651671.CrossRefGoogle Scholar
de la Torre, R. et al. (2010). Survival of lichens and bacteria exposed to outer space conditions – Results of the Lithopanspermia experiments. Icarus 208(2), 735748.Google Scholar
de Vera, J.P., Horneck, G., Rettberg, P. & Ott, S. (2003). The potential of the lichen symbiosis to cope with the extreme conditions of outer space I. Influence of UV radiation and space vacuum on the vitality of lichen symbiosis and germination capacity. Int. J. Astrobiol. 1(1), 285293.CrossRefGoogle Scholar
de Vera, J.P., Horneck, G., Rettberg, P. & Ott, S. (2004a). The potential of the lichen symbiosis to cope with the extreme conditions of outer space II: germination capacity of lichen ascospores in response to simulated space conditions. Adv. Space Res. 33, 12361243.Google Scholar
de Vera, J.P., Horneck, G., Rettberg, P. & Ott, S. (2004b). In the context of panspermia: May lichens serve as shuttles for their bionts in space? In Proceedings of the third European Workshop on Astrobiology, pp. 197–198. ESA SP-545, ESA Publications Division, ESTEC, Noordwijk.Google Scholar
de Vera, J.P., Rettberg, P. & Ott, S. (2008). Life at the limits: capacities of isolated and cultured lichensymbionts to resist extreme environmental stresses. Orig. Life Evol. Biosph. 38, 457468.Google Scholar
de Vera, J.P., Möhlmann, D., Butina, F., Lorek, A., Wernecke, R. & Ott, S. (2010). Survival potential and photosynthetic activity of lichens under Mars-like conditions: a laboratory study. Astrobiology 10(2), 215227.Google Scholar
de Vera, J.P., Schulze-Makuch, D., Khan, A., Lorek, A., Koncz, A., Möhlmann, D. & Spohn, T. (2013). Adaptation of an Antarctic lichen to Martian niche conditions can occur within 34 days. Planet Space Sci. 98, 182190. doi: 10.1016/j.pss.2013.07.014 CrossRefGoogle Scholar
Emmerich, W.D. & Post, E. (1997). Simultaneous thermal analysis – Mass spectrometer skimmer coupling system. J. Therm. Anal. 49, 10071012.CrossRefGoogle Scholar
Farmer, C.B., Davies, D.W., Holland, A.L., LaPorte, D.D. & Doms, P.E. (1977). Mars: water vapor observations from the Viking orbiters. J. Geophys. Res. 82(B28), 42254248.Google Scholar
Feldman, W.C., Prettyman, T.H., Maurice, S., Plaut, J.J., Bish, D.L., Vaniman, D.T. & Tokar, R.L. (2004). Global distribution of near-surface hydrogen on Mars. J. Geophys. Res. 109(E9), 113, doi: 10.1029/2003JE002160 Google Scholar
Grotzinger, J.P. et al. (2014). A habitable fluvio-lacustrineenvironment at yellowknife bay, gale crater, mars. Science 343(6169), 1242777. doi: 10.1126/science.1242777 CrossRefGoogle ScholarPubMed
Hale, M.E. (1976). The Biology of Lichens, pp. 3739. Edward Arnold Publishers, London.Google Scholar
Hanss, J., Kalytta, A. & Reller, A. (2003). Potentials and limitations of the skimmer MS system, hyphenated techniques in thermal analysis. In Proceedings of the 5th SelberKopplungstage, ed. Kapsch, E. & Hollering, M., pp. 151–163. Bad Orb, Germany (May 25–28, 2003).Google Scholar
Harańczyk, H., Pytel, M., Pater, Ł. & Olech, A. (2008). Deep dehydration resistance of antarctic lichens (genera Umbilicaria and Ramalina) by proton NMR and sorbtion isotherm. Antarctic Sci. Cambridge University Press, 20(6), 527535.Google Scholar
Hassler, D.M. et al. (2014). Mars’ surface radiation environment measured with the Mars Science Laboratory's Curiosity Rover. Science 343(6169), 1244797. doi: 10.1126/science. 1244797 CrossRefGoogle ScholarPubMed
Hecht, M.H. et al. (2009). Detection of perchlorate and the soluble chemistry of Martian soil at the phoenix lander site. Science 325(5936), 6467.CrossRefGoogle ScholarPubMed
Henssen, A. & Jahns, H.-M. (1974). Lichenes, pp. 138149. Eine Einführung in die Flechtenkunde. Georg Thieme Verlag, Stuttgart.Google Scholar
Hess, S.L., Henry, R.M., Leovy, C.B., Ryan, J.A. & Tillman, J.E. (1977). Meteorological results from the surface of Mars: viking 1 and 2. J. Geophys. Res. 82(A28), 45594574.Google Scholar
Hill, J.O. (1991). For Better Thermal Analysis III, Special Edition of the International Confederation for Thermal Analysis (ICTA), University of Rome.Google Scholar
Houtkooper, J.M. & Schulze-Makuch, D. (2009). Possibilities for the detection of hydrogen peroxide–water-based life on Mars by the Phoenix Lander. Planet Space Sci. 57(4), 449453.CrossRefGoogle Scholar
Houtkooper, J.M. & Schulze-Makuch, D. (2010). The possible role of perchlorates for Martian life. J Cosmol 5, 930939.Google Scholar
Hubbard, G., Naderi, F. & Garvin, J. (2002). Following the water, the new program for Mars exploration. Acta Astronaut 51, 337350.CrossRefGoogle ScholarPubMed
Jakosky, B.M., Nealson, K.H., Bakermans, C., Ley, R.E. & Mellon, M.T. (2003). Subfreezing activity of microorganisms and the potential habitability of Mars’ polar regions. Astrobiology 3(2), 343350.Google Scholar
Jänchen, J., Meeßen, J., Ott, S., Sànches, F.J. & de la Torre, R. (2013). Low temperature interaction of humidity with the lichens Buelliafrigida and Circinariagyrosa. Extended abstract No. 1504, In Proc. of the 44th LPSC 2013.Google Scholar
Jänchen, J., Bauermeister, A., Feyh, N., de Vera, J.-P., Rettberg, P., Flemming, H.-C. & Szewzyk, U. (2014a). Water retention of selected microorganisms and Martian soil simulants under close to Martian environmental conditions. Planet Space Sci. 98, 163168.Google Scholar
Jänchen, J., Herzog, T.H., Meeßen, J., Ott, S., Feist, M. & de Vera, J.-P.P. (2014b). Impact of UVC exposure on the water retention of the lichen Buelliafrigida. Extended abstract No 1260, In Proc. of the 45th LPSC 2014 Google Scholar
Kaisersberger, E. & Post, E. (1997). Practical aspects for the coupling of gas analytical methods with thermal-analysis instruments. Thermochim. Acta 295, 7393.Google Scholar
Kappen, L. (1973). Environmental response and effects. Response to extreme environments. In The Lichens, ed. Ahmadjian, V. & Hale, M.E., pp. 346348. Academic Press, New York, London.Google Scholar
Kappen, L. (1988). Ecophysiological relationships in different climatic regions. In CRC Handbook of Lichenology, ed. Galun, M., vol. II, pp. 3799. CRC Press, Boca Ranton.Google Scholar
Kappen, L. (1993). Plant activity under snow and ice, with particular reference to lichens. Arctic 46(4), 297302.Google Scholar
Kappen, L. & Valladares, F. (1999). Opportunistic growth and desiccation tolerance: the ecological success of poikilohydrous autotrophs. In Handbook of Functional Plant Ecology, ed. Pugnaire, F.I. & Valladares, F., pp. 980. Marcel Dekker, Basel.Google Scholar
Kieffer, H.H., Martin, T.Z., Peterfreund, A.R., Jakosky, B.M., Miner, E.D. & Palluconi, F.D. (1977). Thermal and albedo mapping of Mars during the Viking primary mission. J. Geophys. Res. 82(A28), pp. 42494291.CrossRefGoogle Scholar
Kranner, I., Cram, W.J., Zorn, M., Wornik, S., Yoshimura, I., Stabentheiner, E. & Pfeifhofer, H.W. (2005). Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc. Natl Acad. Sci. USA 102(8), 31413146.Google Scholar
Lange, O.L. (1969). Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste. I. CO2-Gaswechsel von Ramalinamaciformis (Del.) Bory unter kontrollierten Bedingungen im Laboratorium. Flora 158, 324333.Google Scholar
Lange, O.L. (1992). Pflanzenleben unter Stress, pp. 213217. Echter Würzburg Fränkische Gesellschaftsdruckerei und Verlag, Würzburg.Google Scholar
Lange, O.L., Kilian, E. & Ziegler, H. (1986). Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71, 104110.CrossRefGoogle ScholarPubMed
Lange, O.L., Green, T.G.A. & Reichenberger, H. (1999). The response of lichen photosynthesis to external CO2 concentration and its interaction with thallus water-status. J Plant Physiol. 154, 157166.CrossRefGoogle Scholar
Lange, O.L., Green, T.G.A. & Heber, U. (2001). Hydration-dependent photosynthetic production of lichens: what do laboratory studies tell us about field performance. J. Exp. Bot., Special Issue 52(363), 20332042.CrossRefGoogle ScholarPubMed
Malin, M.C., Edgett, K.S., Posiolova, L.V., McColley, S.M., Dobrea, E.Z. & Noe, E.A. (2006). Present-day impact cratering rate and contemporary gully activity on Mars. Science 314(5805), 15731577.CrossRefGoogle ScholarPubMed
Marchant, D.R. & Head, J.W. (2007). Antarctic dry valleys: microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus 192, 187222.Google Scholar
McBain, J.W. & Bakr, A.M. (1926). A new sorption balance. J. Am. Chem. Soc. 48, 690.CrossRefGoogle Scholar
McEwen, A.S., Dundas, C.M., Mattson, S.S., Toigo, A.D., Ojha, L., Wray, J.J., Chojnacki, M., Byrne, S., Murchie, S.L. & Thomas, N. (2012). Recurring slope lineae in equatorial regions of Mars. Nat. Geosci. 7, 5358.Google Scholar
McKay, C.P., Friedmann, E.I., Gomez-Silva, B., Caceres-Villanueva, L., Andersen, D.T. & Landheim, R. (2003). Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: four years of observations including the El Nino of 1997–1998. Astrobiology 3(2), 393406.Google Scholar
Meeßen, J., Sánchez, F.J., Brandt, A., Balzer, E.M., de la Torre, R., Sancho, L.G., de Vera, J.P. & Ott, S. (2013). Extremotolerance and resistance of lichens: comparative studies on five species used in astrobiological research I. Morphological and anatomical characteristics. Orig. Life Evol. Biosph. 43(3), 283303.CrossRefGoogle ScholarPubMed
Meeßen, J., Sánchez, F.J., Sadowsky, A., de la Torre, R., Ott, S. & de Vera, J.-P. (2014). Extremotolerance and resistance of lichens: comparative studies on five species used in astrobiological research II. Secondary lichen compounds. Orig. Life. Evol. Biosph. 43(4), 501526.Google Scholar
Meredith, P. & Riesz, J. (2004). Radiative relaxation quantum yields for synthetic eumelanin. Photochem. Photobiol 79(2), 211216.Google Scholar
Ming, D.W. et al. (2014). Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale crater, Mars. Science 343(6169), 1245267. doi: 10.1126/science.1245267 CrossRefGoogle ScholarPubMed
Möhlmann, D.T. (2004). Water in the upper Martian surface at mid-and low-latitudes: presence, state, and consequences. Icarus 168(2), 318323.Google Scholar
Möhlmann, D.T. (2008). The influence of van der Waals forces on the state of water in the shallow subsurface of Mars. Icarus 195(1), 131139.Google Scholar
Möhlmann, D.T. (2010). The three types of liquid water in the surface of present Mars. Int. J. Astrobiol. 9(1), 4549.CrossRefGoogle Scholar
Murphy, J.R., Leovy, C.B. & Tillman, J.E. (1990). Observations of Martian surface winds at the Viking Lander 1 site. J. Geophys. Res. 95(B09), 1455514576.CrossRefGoogle Scholar
Nybakken, L., Solhaug, K.A., Bilger, W. & Gauslaa, Y. (2004). The lichens Xanthoriaelegans and Cetrariaislandica maintain a high protection against UV-B radiation in Arctic habitats. Oecologia 140, 211216.Google Scholar
Onofri, S. et al. (2012). Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12(5), 508516.CrossRefGoogle ScholarPubMed
Øvstedal, D.O. & Lewis Smith, R.I. (2001). Lichens of Antarctica and South Georgia. A Guide to their Identification and Ecology, pp. 66365. Cambridge University Press, Cambridge.Google Scholar
Poulet, F., Bibring, J.-P., Mustard, J.F., Gendrine, A., Mangold, N., Langevin, Y., Arvidson, R.E., Gondet, B., Gomez, C. & the OMEGA Team (2005). Phyllosilicates on Mars and implications for early martian climate. Nature 438, 623627.Google Scholar
Raggio, J., Pintado, A., Ascaso, C., de la Torre, R., de los Ríos, A., Wierzchos, J., Horneck, G. & Sancho, L.G. (2011). Whole lichen thalli survive exposure to space conditions: results of lithopanspermia experiment with Aspicilia fruticulosa . Astrobiology 11(4), 281292.Google Scholar
Rennó, N.O. et al. (2009). Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site. J. Geophys. Res. 114(E1), 19912012.Google Scholar
Ried, A. (1960). Thallusbau und Assimilationshaushalt von Laub- und Krustenflechten. BiolZbl 79, 129134.Google Scholar
Sánchez, F.J., Mateo-Martí, E., Raggio, J., Meeßen, J., Martínez-Frías, J., Sancho, L.G., Ott, S. & de la Torre, R. (2012). The resistance of the lichen Circinariagyrosa (nom. provis.) towards simulated Mars conditions−a model test for the survival capacity of a eukaryotic extremophile. Planet Space Sci. 72(1), 102110.Google Scholar
Sánchez, F.J., Meeßen, J., Ruiz, M., Sancho, L.G., Ott, S., Vílchez, C., Horneck, G., Sadowsky, A. & de la Torre, R. (2014). UV-C tolerance of symbiotic Trebouxia sp. in the space-tested lichen species Rhizocarpongeographicum and Circinariagyrosa: role of the hydration state and cortex/screening substances. Int. J. Astrobiol. 13(1), 118.CrossRefGoogle Scholar
Sancho, L.G., Schroeter, B. & del Prado, R. (2000). Ecophysiology and morphology of the globular erratic lichen Aspiciliafruticulosa (Eversm.)Flag.from Central Spain. BiblLichenologica 75, 137147.Google Scholar
Sancho, L.G., de la Torre, R., Horneck, G., Ascaso, C., de los Ríos, A., Pintado, A., Wierzchos, J. & Schuster, M. (2007). Lichens survive in space: results from 2005 LICHENS experiment. Astrobiology 7(3), 443454.Google Scholar
Scalzi, G., Selbmann, L., Zucconi, L., Rabbow, E., Horneck, G., Albertano, P. & Onofri, S. (2012). The LIFE Experiment: isolation of cryptoendolithic organisms from Antarctic colonized sandstone exposed to space and simulated Mars conditions on the International Space Station. Orig. Life Evol. Biosph. 42, 253262.CrossRefGoogle ScholarPubMed
Schultze, D. (1971). Differentialthermoanalyse, Deutscher Verlag der Wissenschaften, 2nd edn, p. 27. Berlin.Google Scholar
Sigfridsson, B. & Oquist, G. (1980). Preferential distribution of excitation energy into photosystem I of desiccated samples of the lichen Cladoniaimpexa and the isolated lichen-alga Trebouxiapyriformis . Physiol. Plant 49(4), 329335.Google Scholar
Smith, D.C. (1962). The biology of lichen thalli. Biol. Rev. 37, 537542.CrossRefGoogle Scholar
Smith, P.H. et al. (2009). H2O at the phoenix landing site. Science 325(5936), 5861.Google Scholar
Sohrabi, M. (2012). Taxonomy and phylogeny of the manna lichens and allied species (Megasporaceae). PhD Thesis, Publications in Botany from the University of Helsinki. http://urn.fi/URN:ISBN:978-952-10-7400-4 Google Scholar
Sun, H.J., Nienow, J.A. & McKay, C.P. (2010). The antarctic cryptoendolithic microbial ecosystem. In Life in Antarctic Deserts and other Cold Dry Environments—Astrobiological Analogs, ed. Doran, P.T., Lyons, W.B. & McKnight, D.M., pp. 110138. Cambridge University Press, Cambridge.Google Scholar
Tillman, J.E. (1988). Mars global atmospheric oscillations: annually synchronized, transient normal-mode oscillations and the triggering of global dust storms. J. Geophys. Res. 93(D8), 94339451.Google Scholar
Valladares, F., Wierzchos, J. & Ascaso, C. (1993). Porosimetric study of the lichen family Umbilicariaceae: anatomical interpretation and implications for water storage capacity of the thallus. Am. J. Bot. 80, 263272.CrossRefGoogle Scholar
Vaniman, D.T. et al. (2014). Mineralogy of a mudstone at Yellowknife Bay, Gale Crater, Mars. Science 343(6169), 1243480. doi: 10.1126/science.1243480 Google Scholar
Williams, R.M.E. et al. (2013). Martian fluvial conglomerates at Gale Crater. Science 340(6136), 10681072.Google Scholar