Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T07:35:38.109Z Has data issue: false hasContentIssue false

Habitability on planetary surfaces: interdisciplinary preparation phase for future Mars missions

Published online by Cambridge University Press:  30 July 2009

Z. Peeters
Affiliation:
Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands NASA Goddard Space Flight Center, Code 691, Greenbelt, MD 20771, USA
R. Quinn
Affiliation:
SETI Institute, NASA Ames Research Center, Moffett Field, CA 94035, USA
Z. Martins
Affiliation:
Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
M.A. Sephton
Affiliation:
Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
L. Becker
Affiliation:
John Hopkins University, 3400 North Charles St, Baltimore, MD 21218, USA
M.C.M. van Loosdrecht
Affiliation:
Delft University of Technology, Faculty of Applied Sciences, Department of Biotechnology, Julianalaan 67, 2628 BC Delft, The Netherlands
J. Brucato
Affiliation:
INAF Osservatorio Astrofisico di Arcetri, L.go E. Fermi 5, 50125 Firenze, Italy
F. Grunthaner
Affiliation:
In Situ Exploration Technology Group, NASA Jet Propulsion Laboratory, Pasadena, CA, USA
P. Ehrenfreund
Affiliation:
Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands Space Policy Institute, Elliott School of International Affairs, Washington DC, USA

Abstract

Life on Earth is one of the outcomes of the formation and evolution of our solar system and has adapted to every explored environment on planet Earth. Recent discoveries have shown that life can exist in extreme environments, such as hydrothermal vents, in deserts and in ice lakes in Antarctica. These findings challenge the definition of the ‘planetary habitable zone’. The objective of future international planetary exploration programmes is to implement a long-term plan for the robotic and human exploration of solar system bodies. Mars has been a central object of interest in the context of extraterrestrial life. The search for extinct or extant life on Mars is one of the main goals of space missions to the Red Planet during the next decade. In this paper we describe the investigation of the physical and chemical properties of Mars soil analogues collected in arid deserts. We measure the pH, redox potential and ion concentrations, as well as carbon and amino acid abundances of soils collected from the Atacama desert (Chile and Peru) and the Salten Skov sediment from Denmark. The samples show large differences in their measured properties, even when taken only several meters apart. A desert sample and the Salten Skov sediment were exposed to a simulated Mars environment to test the stability of amino acids in the soils. The presented laboratory and field studies provide limits to exobiological models, evidence on the effects of subsurface mineral matrices, support current and planned space missions and address planetary protection issues.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benner, S.A., Devine, K.G., Mateeva, L.N. & Powell, D.H. (2000). From the cover: the missing organic molecules on Mars. Proc. Natl. Acad. Sci. USA, 97(6), 24252430.CrossRefGoogle Scholar
Bernstein, M.P., Moore, M.H., Elsila, J.E., Sandford, S.A., Allamandola, L.J. & Zare, R.N. (2003). Side group addition to the polycyclic aromatic hydrocarbon coronene by proton irradiation in cosmic ice analogs. Astrophys. J., 582(1), L25L29.CrossRefGoogle Scholar
Bibring, J.-P. et al. (2005). Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 307(5715), 15761581.CrossRefGoogle ScholarPubMed
Bibring, J.-P. et al. (2006). Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312(5772), 400404.CrossRefGoogle ScholarPubMed
Bibring, J.-P. & Langevin, Y. (2008). Mineralogy of the Martian surface from Mars Express OMEGA observations. In The Martian surface: composition, mineralogy, and physical properties, ed. Bell, J.F. III, ch. 7, pp. 153168. Cambridge University Press, Cambridge, U.K.Google Scholar
Biemann, K. (2007). On the ability of the Viking gas chromatograph-mass spectrometer to detect organic matter. Proc. Nat. Acad. Sci. USA 104(25), 1031010313.CrossRefGoogle ScholarPubMed
Biemann, K. & Lavoie, J.M. (1979). Some final conclusions and supporting experiments related to the search for organic compounds on the surface of Mars. J. Geophys. Res. 84(Sp. Iss) 83858390.CrossRefGoogle Scholar
Biemann, K., Oro, J., Toulmin, P. III, Orgel, L.E., Nier, A.O., Anderson, D.M., Simmonds, P.G., Flory, D., Diaz, A.V., Rushneck, D.R. & Biller, J.A. (1976). Search for organic and volatile inorganic compounds in two surface samples from the Chryse Planitia region of Mars. Science 194, 7276.CrossRefGoogle ScholarPubMed
Biemann, K. et al. (1977). The search for organic substances and inorganic volatile compounds in the surface of Mars. J. Geophys. Res. 82(28), 46414658.CrossRefGoogle Scholar
Bishop, J.L. et al. (2008). Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars. Science 321(5890), 830833.CrossRefGoogle ScholarPubMed
Böhlke, J.K., Erickson, G.E. & Revesz, K. (1997). Stable isotope evidence for an atmospheric origin of desert nitrate deposits in northern Chile and southern California, USA. Chem. Geol. 136, 135152.CrossRefGoogle Scholar
Botta, O. & Bada, J.L. (2002). Extraterrestrial organic compounds in meteorites. Surv. Geophys. 23(5), 411467.CrossRefGoogle Scholar
Boynton, W.V. et al. (2009). Evidence for calcium carbonate at the Mars Phoenix landing site. Science, 325(5936), 6164.CrossRefGoogle ScholarPubMed
Buch, A., Glavin, D.P., Sternberg, R., Szopa, C., Rodier, C., Navarro-González, R., Raulin, F., Cabane, M. & Mahaffy, P.R. (2006). A new extraction technique for in situ analyses of amino and carboxylic acids on Mars by gas chromatography mass spectrometry. Planet. Space Sci, 54(15), 15921599.CrossRefGoogle Scholar
Cabrol, N.A. et al. (2001). Nomad rover field experiment, Atacama Desert, Chile 1. Science results overview. J. Geophys. Res. 106(E4), 77857806.CrossRefGoogle Scholar
Cameron, R. (1969a). Cold desert characteristics and problems relevant to other arid lands. In Arid Lands in Perspective, ed. McGinnies, W. & Goldman, B. pp. 167205. The University of Arizona Press, Tucson, AZ, USA.Google Scholar
Cameron, R. (1969b). Abundance of microflora in soils of desert regions. Technical report 32-1378, NASA.Google Scholar
Cameron, R. et al. (1965). Soil properties of samples from the Chile Atacama desert. In Soil Studies – Desert Microflora, vol. X, pp. 214222. NASA JPL, USA.Google Scholar
Cameron, R. et al. (1966). Abundance of microflora in soil samples from the Chile Atacama desert. In Soil Studies – Desert Microflora, vol. XII, pp. 140147. NASA JPL, USA.Google Scholar
Chevrier, V. & Mathé, P.E. (2007). Mineralogy and evolution of the surface of Mars: a review. Planet. Space Sci. 55(3), 289314.CrossRefGoogle Scholar
Dartnell, L.R., Desorgher, L., Ward, J.M. & Coates, A.J. (2007). Modelling the surface and subsurface Martian radiation environment: implications for astrobiology. Geophys. Res. Lett. 34(2), L02207.CrossRefGoogle Scholar
Derenne, S., Robert, F., Skrzypczak-Bonduelle, A., Gourier, D., Binet, L. & Rouzaud, J.-N. (2008). Molecular evidence for life in the 3.5 billion year old Warrawoona chert. Earth Planet. Sci. Lett. 272, 476480.CrossRefGoogle Scholar
Encrenaz, Th., Lellouch, E., Atreya, S.K. & Wong, A.S. (2004). Detectability of minor constituents in the Martian atmosphere by infrared and submillimeter spectroscopy. Planet. Space Sci. 52(11), 10231037.CrossRefGoogle Scholar
Ericksen, G.E. (1981). Geology and origin of the Chilean nitrate deposits. Geological Survey Professional Paper 1188, p. 37. US Geological Survey, USA.Google Scholar
Esposito, F., Colangeli, L. & Palomba, E. (2000). Infrared reflectance spectroscopy of Martian analogues. J. Geophys. Res. 105(E7), 1764317654.CrossRefGoogle Scholar
Ewing, S.A., Sutter, B., Owen, J., Nishiizumi, K., Sharp, W., Cliff, S.S., Perry, K., Dietrich, W., McKay, C.P. & Amundson, R. (2006). A threshold in soil formation at Earth's arid-hyperarid transition. Geochim. Cosmochim. Acta. 70, 52935322.CrossRefGoogle Scholar
Garry, J.R.C., ten Kate, I.L., Martins, Z., Nørnberg, P. & Ehrenfreund, P. (2006). Analysis and survival of amino acids in Martian regolith analogues. Meteorit. Planet. Sci. 41(3), 391405.CrossRefGoogle Scholar
Gendrin, A. et al. (2005). Sulfates in Martian layered terrains: the OMEGA/Mars Express view. Science 307(5715), 15871591.CrossRefGoogle ScholarPubMed
Glavin, D.P., Cleaves, H.J., Schubert, M., Aubrey, A. & Bada, J.L. (2004). New method for estimating bacterial cell abundances in natural samples by use of sublimation. Appl. Environ. Microbiol. 70(10), 59235928.CrossRefGoogle ScholarPubMed
Grotzinger, J.P. et al. (2005). Stratigraphy and sedimentology of a dry to wet Eolian depositional system, burns formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett. 240(1), 1172.CrossRefGoogle Scholar
Hansen, A.A., Merrison, J., Nørnberg, P., Lomstein, B.A. & Finster, K. (2005). Activity and stability of a complex bacterial soil community under simulated Martian conditions. Int. J. Astrobiology, 4(2), 135144.CrossRefGoogle Scholar
Hecht, M.H. et al. (2009). Detection of perchlorate and the soluble chemistry of Martian soil: findings from the Phoenix Mars Lander. Science, 325(5936), 6467.CrossRefGoogle Scholar
Heldmann, J.L., Carlsson, E., Johansson, H., Mellon, M.T. & Toon, O.B. (2007). Observations of Martian gullies and constraints on potential formation mechanisms. II The northern hemisphere. Icarus, 188(2), 324344.CrossRefGoogle Scholar
Hurowitz, J.A., Tosca, N.J., McLennan, S.M. & Schoonen, M.A.A. (2007). Production of hydrogen peroxide in Martian and lunar soils. Earth Planet. Sci. Lett. 255, 4152.CrossRefGoogle Scholar
Lammer, H. et al. (2009). What makes a planet habitable? Astron. Astroph. Rev. 17(2), 181249.CrossRefGoogle Scholar
Lester, E.D., Satomi, M. & Ponce, A. (2007). Microflora of extreme arid Atacama desert soils. Soil Biol. Biochem. 39(2), 704708.CrossRefGoogle Scholar
Liang, M.-C., Hartman, H., Kopp, R.E., Kirschvink, J.L. & Yung, Y.L. (2006). Production of hydrogen peroxide in the atmosphere of a snowball earth and the origin of oxygenic photosynthesis. Proc. Nat. Acad. Sci. USA 103(50), 1889618899.CrossRefGoogle ScholarPubMed
Maier, R.M., Drees, K.P., Neilson, J.W., Henderson, D.A., Quade, J. & Betancourt, J.L. (2004). Microbial life in the Atacama desert. Science 306(5700), 1289c1290c.CrossRefGoogle ScholarPubMed
Malin, M.C. & Edgett, K.S. (2000). Evidence for groundwater seepage and surface runoff on Mars. Science 288(5475), 23302335.CrossRefGoogle ScholarPubMed
Martins, Z., Alexander, C.M.O.D., Orzechowska, G.E., Fogel, M.L. & Ehrenfreund, P. (2007a). Indigenous amino acids in primitive CR meteorites. Meteorit. Planet. Sci. 42(12), 21252136.CrossRefGoogle Scholar
Martins, Z. et al. (2007b). Amino acid composition, petrology, geochemistry, 14C terrestrial age and oxygen isotopes of the Shişr 033 CR chondrite. Meteorit. Planet. Sci. 42(9), 15811595.CrossRefGoogle Scholar
Merrison, J., Jensen, J., Kinch, K., Mugford, R. & Nørnberg, P. (2004). The electrical properties of Mars analogue dust. Planet. Space Sci. 52(4), 279290.CrossRefGoogle Scholar
Meunier, D., Sternberg, R., Mettetal, F., Buch, A., Coscia, D., Szopa, C., Rodier, C., Coll, P., Cabanec, M. & Raulin, F. (2007). A laboratory pilot for in situ analysis of refractory organic matter in Martian soil by gas chromatography mass spectrometry. Adv. Space Res. 39(3), 337344.CrossRefGoogle Scholar
Michalski, J., Bibring, J., Poulet, F., Mangold, N., Loizeau, D., Hauber, E., Altieri, F & Carrozzo, G. (2008). Mineral mapping of high priority landing sites for MSL and beyond using Mars Express OMEGA and HRSC data. American Geophysical Union, Fall Meeting 2008, abstract #P33B-1463.Google Scholar
Morris, R.V. et al. (2006). Mössbauer mineralogy of rock, soil, and dust at Gusev Crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills, J. Geophys. Res. 111(E2), E02S13.Google Scholar
Navarro-González, R. et al. (2003). Mars-like soils in the Atacama desert, Chile, and the dry limit of microbial life. Science 302, 10181021.CrossRefGoogle ScholarPubMed
Nørnberg, P., Schwertmann, U., Stanjek, H., Andersen, T. & Gunnlaugsson, H.P. (2004). Mineralogy of a burned soil compared with four anomalously red Quarternary deposits in Denmark. Clay Minerals, 39(1), 8598.CrossRefGoogle Scholar
Okubo, C.H. & McEwen, A.S. (2007). Fracture-controlled paleo-fluid flow in Candor Chasma, Mars. Science 315(5814), 983985.CrossRefGoogle ScholarPubMed
Osterloo, M.M., Hamilton, V.E., Bandfield, J.L., Glotch, T.D., Baldridge, A.M., Christensen, P.R., Tornabene, L.L. & Anderson, F.S. (2008). Chloride-bearing materials in the southern highlands of Mars, Science 319(5870), 16511654.CrossRefGoogle ScholarPubMed
Patel, M.R., Zarnecki, J.C. & Catling, D.C. (2002). Ultraviolet radiation on the surface of Mars and the Beagle 2 UV sensor. Planet. Space Sci. 50(9), 915927.CrossRefGoogle Scholar
Poulet, F., Bibring, J.-P., Mustard, J.F., Gendrin, A., Mangold, N., Langevin, Y., Arvidson, R.E., Gondet, B. & Gomez, C. (2005). Phyllosilicates on Mars and implications for early Martian climate. Nature, 438(7068), 623627.CrossRefGoogle ScholarPubMed
Quinn, R.C., Zent, A.P., Grunthaner, F.J., Ehrenfreund, P., Taylor, C.L. & Garry, J.R.C. (2005). Detection and characterization of oxidizing acids in the Atacama desert using the Mars Oxidation Instrument. Planet. Space Sci. 53(13), 13761388.CrossRefGoogle Scholar
Rech, J.A., Quade, J. & Hart, W.S. (2003). Isotopic evidence for the source of Ca and S in soil gypsum, anhydrite and calcite in the Atacama desert, Chile. Geochim. Cosmochim. Acta, 67(4), 575586.CrossRefGoogle Scholar
Ruiterkamp, R., Peeters, Z., Moore, M.H., Hudson, R.L. & Ehrenfreund, P. (2005). A quantitative study of proton irradiation and UV photolysis of benzene in interstellar environments. Astron. Astrophys. 440(1), 391402.CrossRefGoogle Scholar
Salisbury, J.W., Walter, L.S., Vergo, N. & D'Aria, D.M. (1991). In Infrared (2.1–25 μm) Spectra of Minerals, Johns Hopkins University Press, Baltimore.Google Scholar
Seiferlin, K., Ehrenfreund, P., Garry, J.R.C., Gunderson, K., Hütter, E., Kargl, G., Maturilli, A. & Merrison, J.P. (2008). Simulating Martian regolith in the laboratory, Planet. Space Sci. 56(15), 20092025.CrossRefGoogle Scholar
Skelley, A.M., Aubrey, A.D., Willis, P., Amaskhukeli, X., Ponce, A., Ehrenfreund, P., Grunthaner, F.J., Bada, J.L. & Mathies, R.A. (2006). Detection of trace biomarkers in the Atacama desert with a novel in situ organic compound analysis system. 37th Annual Lunar and Planetary Science Conference, abstract no. 2270.Google Scholar
Squyres, S.W. et al. (2004a). In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 306(5702), 17091714.CrossRefGoogle ScholarPubMed
Squyres, S.W. et al. (2004b). The Opportunity rover's Athena science investigation at Meridiani Planum, Mars. Science 306(5702), 16981703.CrossRefGoogle ScholarPubMed
Squyres, S.W. et al. (2008). Detection of silica-rich deposits on Mars. Science 320(5879), 10631067.CrossRefGoogle ScholarPubMed
Squyres, S.W. et al. (2009). Exploration of Victoria crater by the Mars Rover Opportunity. Science 324(5930), 10581061.CrossRefGoogle ScholarPubMed
Stoker, C.R. & Bullock, M.A. (1997). Organic degradation under simulated Martian conditions. J. Geophys. Res. 102(E5), 1088110888.CrossRefGoogle ScholarPubMed
Sutter, B., Dalton, J.B., Ewing, S.A., Amundson, R. & McKay, C.P. (2005). Infrared spectroscopic analyses of sulfate, nitrate, and carbonate-bearing Atacama desert soils: analogs for the interpretation of infrared spectra from the Martian surface. 36th Annual Lunar and Planetary Science Conference, abstract no. 2182.Google Scholar
ten Kate, I.L., Garry, J.R.C., Peeters, Z., Quinn, R.C., Foing, B. & Ehrenfreund, P. (2005). Amino acid photostability on the Martian surface. Meteorit. Planet. Sci. 40(8), 11851193.CrossRefGoogle Scholar
Zhao, M.X. & Bada, J.L. (1995). Determination of α-dialkylamino acids and their enantiomers in geological samples by high-performance liquid chromatography after derivatization with a chiral adduct of o-phthaldialdehyde. J. Chrom. A, 690(1), 5563.CrossRefGoogle ScholarPubMed