Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T06:07:36.590Z Has data issue: false hasContentIssue false

Habitability of super-Earth planets around main-sequence stars including red giant branch evolution: models based on the integrated system approach

Published online by Cambridge University Press:  17 October 2011

M. Cuntz*
Affiliation:
Department of Physics, University of Texas at Arlington, Box 19059, Arlington, TX 76019, USA
W. von Bloh*
Affiliation:
Potsdam Institute for Climate Impact Research, 14412 Potsdam, Germany
K.-P. Schröder*
Affiliation:
Department of Astronomy, University of Guanajuato, 36000 Guanajuato, GTO, Mexico
C. Bounama*
Affiliation:
Potsdam Institute for Climate Impact Research, 14412 Potsdam, Germany
S. Franck
Affiliation:
Potsdam Institute for Climate Impact Research, 14412 Potsdam, Germany

Abstract

In a previous study published in Astrobiology, we focused on the evolution of habitability of a 10 M super-Earth planet orbiting a star akin to the Sun. This study was based on a concept of planetary habitability in accordance with the integrated system approach that describes the photosynthetic biomass production taking into account a variety of climatological, biogeochemical and geodynamical processes. In the present study, we pursue a significant augmentation of our previous work by considering stars with zero-age main-sequence masses between 0.5 and 2.0 M with special emphasis on models of 0.8, 0.9, 1.2 and 1.5 M. Our models of habitability consider geodynamical processes during the main-sequence stage of these stars as well as during their red giant branch evolution. Pertaining to the different types of stars, we identify the so-called photosynthesis-sustaining habitable zone (pHZ) determined by the limits of biological productivity on the planetary surface. We obtain various sets of solutions consistent with the principal possibility of life. Considering that stars of relatively high masses depart from the main-sequence much earlier than low-mass stars, it is found that the biospheric lifespan of super-Earth planets of stars with masses above approximately 1.5 M is always limited by the increase in stellar luminosity. However, for stars with masses below 0.9 M, the lifespan of super-Earths is solely determined by the geodynamic timescale. For central star masses between 0.9 and 1.5 M, the possibility of life in the framework of our models depends on the relative continental area of the super-Earth planet.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chabrier, G. (2003). Publ. Astron. Soc. Pac. 115, 763795.CrossRefGoogle Scholar
Cockell, C.S. (1999). Icarus 141, 399407.CrossRefGoogle Scholar
Cuntz, M., von Bloh, W., Bounama, C. & Franck, S. (2003). Icarus 162, 214221.CrossRefGoogle Scholar
Cuntz, M., Guinan, E.F. & Kurucz, R.L. (2010). In Solar and Stellar Variability: Impact on Earth and Planets, Proc. IAU Symposium 264, ed. Kosovichev, A.G., Andrei, A.H. and Rozelot, J.-P., pp. 419426. Cambridge University Press, Cambridge.Google Scholar
Dupree, A.K. & Reimers, D. (1987). In Exploring the Universe with the IUE Satellite, ed. Kondo, Y., pp. 321353. Kluwer Academic Publisher, Kluwer.CrossRefGoogle Scholar
Franck, S. (1998). Tectonophysics 291, 918.CrossRefGoogle Scholar
Franck, S. & Bounama, C. (1995). Phys. Earth Planet. Inter. 92, 5765.CrossRefGoogle Scholar
Franck, S., Block, A., von Bloh, W., Bounama, C., Schellnhuber, H.-J. & Svirezhev, Y. (2000a). Tellus 52B, 94107.CrossRefGoogle Scholar
Franck, S., von Bloh, W., Bounama, C., Steffen, M., Schönberner, D. & Schellnhuber, H.-J. (2000b). J. Geophys. Res. 105, 16511658.CrossRefGoogle Scholar
Franck, S., Cuntz, M., von Bloh, W. & Bounama, C. (2003). Int. J. Astrobiol. 2, 3539.CrossRefGoogle Scholar
Hawley, S.L., Allred, J.C., Johns-Krull, C.M., Fisher, G.H., Abbett, W.P., Alekseev, I., Avgoloupis, S.I., Deustua, S.E., Gunn, A., Seiradakis, J.H. et al. (2003). Astrophys. J. 597, 535554.CrossRefGoogle Scholar
Heller, R., Leconte, J. & Barnes, R. (2011). Astron. Astrophys. 528, A27.CrossRefGoogle Scholar
Jones, B.W., Underwood, D.R. & Sleep, P.N. (2005). Astrophys. J. 622, 10911101.CrossRefGoogle Scholar
Jones, B.W., Sleep, P.N. & Underwood, D.R. (2006). Astrophys. J. 649, 10101019.CrossRefGoogle Scholar
Kasting, J.F., Whitmire, D.P. & Reynolds, R.T. (1993). Icarus 101, 108128.CrossRefGoogle Scholar
Kroupa, P. (2002). Science 295 (5552), 8291.CrossRefGoogle Scholar
Lammer, H. (2007). Astrobiology 7, 2729.CrossRefGoogle Scholar
Lammer, H., Bredehöft, J.H., Coustenis, A., Khodachenko, M.L., Kaltenegger, L., Grasset, O., Prieur, D., Raulin, F., Ehrenfreund, P., Yamauchi, M. et al. (2009). Astron. Astrophys. Rev. 17, 181249.CrossRefGoogle Scholar
Lopez, B., Schneider, J. & Danchi, W.C. (2005). Astrophys. J. 627, 974985.CrossRefGoogle Scholar
Maeder, A. & Meynet, G. (1988). Astron. Astrophys. Suppl. Ser. 76, 411425.Google Scholar
Noack, L. & Breuer, D. (2011). Geophys. Res. Abst. 13, EGU2011-10880.Google Scholar
O'Neill, C. & Lenardic, A. (2007). Geophys. Res. Lett. 34, L19204.CrossRefGoogle Scholar
Pols, O.R., Tout, C.A., Eggleton, P.P. & Han, Z. (1995). Mon. Not. R. Astron. Soc. 274, 964974.CrossRefGoogle Scholar
Pols, O.R., Schröder, K.-P., Hurley, J.R., Tout, C.A. & Eggleton, P.P. (1998). Mon. Not. R. Astron. Soc. 298, 525536.CrossRefGoogle Scholar
Rivera, E.J., Lissauer, J.J., Butler, R.P., Marcy, G.W., Vogt, S.S., Fischer, D.A., Brown, T.M., Laughlin, G. & Henry, G.W. (2005). Astrophys. J. 634, 625640.CrossRefGoogle Scholar
Sackmann, I.-J., Boothroyd, A.I. & Kraemer, K.E. (1993). Astrophys. J. 418, 457468.CrossRefGoogle Scholar
Scalo, J., Kaltenegger, L., Segura, A.G., Fridlund, M., Ribas, I., Kulikov, Yu.N., Grenfell, J.L., Rauer, H., Odert, P., Leitzinger, M. et al. (2007). Astrobiology 7, 85166.CrossRefGoogle Scholar
Schaller, G., Schaerer, D., Meynet, G. & Maeder, A. (1992). Astron. Astrophys. Suppl. Ser. 96, 269331.Google Scholar
Schröder, K.-P. & Cuntz, M. (2005). Astrophys. J. Lett. 630, L73L76.CrossRefGoogle Scholar
Schröder, K.-P. & Cuntz, M. (2007). Astron. Astrophys. 465, 593601.CrossRefGoogle Scholar
Schröder, K.-P. & Smith, R.C. (2008). Mon. Not. R. Astron. Soc. 386, 155163.CrossRefGoogle Scholar
Schröder, K.-P., Pols, O.R. & Eggleton, P.P. (1997). Mon. Not. R. Astron. Soc. 285, 696710.CrossRefGoogle Scholar
Segura, A., Walkowicz, L.M., Meadows, V., Kasting, J. & Hawley, S. (2010). Astrobiology 10, 751771.CrossRefGoogle Scholar
Selsis, F., Kasting, J.F., Levrard, B., Paillet, J., Ribas, I. & Delfosse, X. (2007). Astron. Astrophys. 476, 13731387.CrossRefGoogle Scholar
Sleep, N.H. (2000). J. Geophys. Res. 105, 1756317578.CrossRefGoogle Scholar
Stein, C., Schmalzl, J. & Hansen, H. (2004). Phys. Earth Planet. Inter. 142, 225255.CrossRefGoogle Scholar
Stevenson, D.J., Spohn, T. & Schubert, G. (1983). Icarus 54, 466489.CrossRefGoogle Scholar
Tarter, J.C., Backus, P.R., Mancinelli, R.L., Aurnou, J.M., Backman, D.E., Basri, G.S., Boss, A.P., Clarke, A., Deming, D., Doyle, L.R. et al. (2007). Astrobiology 7, 3065.CrossRefGoogle Scholar
Turcotte, D.L. & Schubert, G. (2002). Geodynamics. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Udry, S., Bonfils, X., Delfosse, X., Forveille, T., Mayor, M., Perrier, C., Bouchy, F., Lovis, C., Pepe, F., Queloz, D. et al. (2007). Astron. Astrophys. 469, L43L47.CrossRefGoogle Scholar
Underwood, D.R., Jones, B.W. & Sleep, P.N. (2003). Int. J. Astrobiol. 2, 289299.CrossRefGoogle Scholar
Valencia, D., Sasselov, D.D. & O'Connell, R.J. (2007). Astrophys. J. 656, 545551.CrossRefGoogle Scholar
Valencia, D. & O'Connell, R.J. (2009). Earth Planet. Sci. Lett. 286, 492502.CrossRefGoogle Scholar
Valencia, D., O'Connell, R.J. & Sasselov, D. (2006). Icarus 181, 545554.CrossRefGoogle Scholar
Vogt, S.S., Butler, R.P., Rivera, E.J., Haghighipour, N., Henry, G.W. & Williamson, M.H. (2010). Astrophys. J. 723, 954965.CrossRefGoogle Scholar
Volk, T. (1987). Am. J. Sci. 287, 763779.CrossRefGoogle Scholar
Von Bloh, W., Cuntz, M., Franck, S. & Bounama, C. (2003). Astrobiology 3, 681688.CrossRefGoogle Scholar
Von Bloh, W., Bounama, C., Cuntz, M. & Franck, S. (2007). Astron. Astrophys. 476, 13651371.CrossRefGoogle Scholar
Von Bloh, W., Cuntz, M., Schröder, K.-P., Bounama, C. & Franck, S. (2009). Astrobiology 9, 593602.CrossRefGoogle Scholar
Von Bloh, W., Cuntz, M., Franck, S. & Bounama, C. (2011). Astron. Astrophys. 528, A133.CrossRefGoogle Scholar
Williams, D.M. (1998). Phd. Thesis, Pennsylvania State University.Google Scholar