Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T03:28:16.613Z Has data issue: false hasContentIssue false

Global versus local adsorption selectivity

Published online by Cambridge University Press:  18 March 2015

Françoise Pauzat*
Affiliation:
Laboratoire de Chimie Théorique, Sorbonne Universités, UPMC Univ. Paris 06, CNRS-UMR 7616, 4, Place Jussieu, 75252 Paris CEDEX 05, France
Gael Marloie
Affiliation:
Laboratoire de Chimie Théorique, Sorbonne Universités, UPMC Univ. Paris 06, CNRS-UMR 7616, 4, Place Jussieu, 75252 Paris CEDEX 05, France
Alexis Markovits
Affiliation:
Laboratoire de Chimie Théorique, Sorbonne Universités, UPMC Univ. Paris 06, CNRS-UMR 7616, 4, Place Jussieu, 75252 Paris CEDEX 05, France
Yves Ellinger
Affiliation:
Laboratoire de Chimie Théorique, Sorbonne Universités, UPMC Univ. Paris 06, CNRS-UMR 7616, 4, Place Jussieu, 75252 Paris CEDEX 05, France

Abstract

The origin of the enantiomeric excess found in the amino acids present in the organic matter of carbonaceous meteorites is still unclear. Selective adsorption of one of the two enantiomers existing after a racemic formation could be part of the answer. Hereafter we report a comparative study of the adsorption of the R and S enantiomers of α-alanine and lactic acid on the hydroxylated {$10\bar 10$} chiral surface of α-quartz using numerical simulation techniques. Structurally different adsorption sites were found with opposite R versus S selectivity for the same molecule–surface couple, raising the problem of whether to consider adsorption as a local property or as a global response characteristic of the whole surface. To deal with the second term of this alternative, a statistical approach was designed, based on the occurrence of each adsorption site whose energy was calculated using first principle periodic density functional theory. It was found that R-alanine and S-lactic acid are the enantiomers preferentially adsorbed, even if the adsorption process on the quartz {$10\bar 10$} surface stays with a disappointingly poor enantio-selectivity. Nevertheless, it highlighted the important point that considering adsorption as a global property changes perspectives in the search for more efficient enantio-selective supports and more generally changes the way to apprehend adsorption processes in astro-chemistry/biology.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asthagiri, A. & Hazen, R.M. (2007). Mol. Simul. 33, 343351.Google Scholar
Belloche, A., Garrod, R.T., Müller, H.S.P. & Menten, K.M. (2014). Science 345, 15841587.CrossRefGoogle Scholar
Bhatia, B. & Sholl, J.D. (2005). Angew. Chem. 44, 77617764.Google Scholar
Cronin, J.R. & Pizzarello, S. (1997). Science 275, 951955.Google Scholar
Downs, R.T. & Hazen, R.M. (2004). J. Mol. Catal. A 216, 273285.Google Scholar
Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, T., Suhai, S. & Seifert, G. (1998). Phys. Rev. B 58, 72607268.Google Scholar
Filippi, C., Gonze, X. & Umrigar, C.J. (1996). In Recent Developments and Applications of Modern Density Functional Theory, ed. Seminario, J.M., Chap. 8, pp. 295326. Elsevier, Amsterdam.Google Scholar
Gladys, M., Stevens, A., Scott, N., Jones, G., Batchelor, D. & Held, D. (2007). J. Phys. Chem. C 111, 83318336.Google Scholar
Goumans, T.P.M., Wander, A., Brown, W.A. & Catlow, C.R.A. (2007). Phys. Chem. Chem. Phys. 9, 21462152.Google Scholar
Han, J.W. & Sholl, D.S. (2009). Langmuir 25, 1073710745.Google Scholar
Han, J.W. & Sholl, D.S. (2010). Phys. Chem. Chem. Phys. 12, 80248032.Google Scholar
Held, G. & Gladys, M. (2008). Top. Catal. 48, 128136.Google Scholar
Horvath, J.D. & Gellman, A.J. (2001). J. Am. Chem. Soc. 123, 79537954.Google Scholar
Horvath, J.D. & Gellman, A.J. (2002). J. Am. Chem. Soc. 124, 23842392.Google Scholar
Horvath, J.D., Koritnik, A., Kamakoti, P., Sholl, J.D. & Gellman, A.J. (2004). J. Am. Chem. Soc. 126, 1498814994.Google Scholar
Julg, A. (1989). Theor. J. Mol. Struct. 53, 131142.Google Scholar
Koch, W. & Holthausen, M.C. (2001). A Chemist Guide to Density Functional Theory, 2nd edn. Wiley-VCH, Weinheim, Germany.CrossRefGoogle Scholar
Kresse, G. & Hafner, J. (1993). Phys. Rev. B 48, 1311513118.Google Scholar
Kresse, G. & Hafner, J. (1994). Phys. Rev. B 49, 1425114269.Google Scholar
Lattelais, M., Pauzat, F., Ellinger, Y. & Ceccarelli, C. (2009). Astrophys. J. Lett. 696, L133L136.CrossRefGoogle Scholar
Lattelais, M. et al. (2011). Astron. Astrophys. 532, A12.Google Scholar
Marloie, G., Lattelais, M., Pauzat, F. & Ellinger, Y. (2010). Interdiscip. Sci. Comput. Life Sci. 2, 4856.Google Scholar
Martins, Z. & Sephton, M.A. (2009). In Vol.1- Origins and Synthesis of Amino Acids, ed. Hughes, A.B., Chap. 1, pp. 342. Wiley-VCH, Weinheim, Germany.Google Scholar
Pauzat, F., Lattelais, M., Ellinger, Y. & Minot, C. (2011). Mon. Not. R. Astron. Soc. 412, 27292734.Google Scholar
Perdew, J.P. (1991). In Electronic Structure of Solids, ed. Ziesche, P. & Eschrig, H., pp. 1120. Academie Verlag, Berlin.Google Scholar
Pizzarello, S. & Cronin, J.R. (1998). Nature 394, 236236.Google Scholar
Pizzarello, S. & Cronin, J.R. (2000). Geochim. Cosmochim. Acta 64, 329338.CrossRefGoogle Scholar
Rimola, A., Sodupe, M. & Ugliengo, P. (2009). J. Phys. Chem. C 113, 57415750.CrossRefGoogle Scholar
Rimola, A., Costa, D., Sodupe, M., Lambert, J.F. & Ugliengo, P. (2013). Chem. Rev. 113, 42164313.Google Scholar
Sargent, B.A. et al. (2009). Astrophys. J. 690, 11931207.Google Scholar
Seifert, G., Porezag, D. & Frauenheim, T. (1996). Int. J. Quantum Chem. 58, 185192.Google Scholar
Wesolowski, T.A., Parisel, O., Ellinger, Y. & Weber, J. (1997). J. Phys. Chem. A 10, 78187825.CrossRefGoogle Scholar
Wesolowski, T.A., Ellinger, Y. & Weber, J. (1998). J. Chem. Phys. 108, 60786083.Google Scholar