Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-02T18:59:25.636Z Has data issue: false hasContentIssue false

Exotic amino acids across the K/T boundary – cometary origin and relevance for species extinction*

Published online by Cambridge University Press:  06 August 2007

Max K. Wallis
Affiliation:
Cardiff University, Centre for Astrobiology, 2 North Road, Cardiff CF10 2DY, Wales, UK e-mail: [email protected]

Abstract

High levels of an exotic amino acid (Aib) and enhanced levels of iridium are evident in sediments pre-dating the Chicxulub impact by several tens of millennia. The source is thought to be debris from the break-up of a giant comet or trans-Neptunian body, a large fragment of which was the 10 km sized impactor that caused the famous iridium spike identified with the K/T boundary. In this paper it is argued that the Aib is not extra-terrestrial but the indicator of exotic pathogenic microfungi that flourished through this era. Its abundance implies a significant role for the fungi in the ecology, in species extinction and in driving evolution as the Tertiary period got underway. Microfungi containing the complex of genes that underlie the synthesis of Aib peptides flourished early on in the K/T transition and attacked species – including dinosaurs – that lacked counter immune mechanisms. Species (including mammals) that possessed or developed effective defence mechanisms won through in the early Tertiary-period flowering of new species. The genetic coding for Aib peptide synthesis might have evolved by natural selection. However, the coincidence in the boundary record between Aib peptides and the rise of iridium is indicative of the Aib blueprint arriving from space, in some carrier-organism or in microfungi themselves.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, L.W., Alvarez, W., Asaro, F. & Michel, H.V. (1980). Science 208, 10951108.CrossRefGoogle Scholar
Anbar, A.D., Wasserburg, G.J., Papanastassiou, D.A. & Andersson, D.A. (1996). Science 273, 15241528.CrossRefGoogle Scholar
Bada, J.L. (1991). Phil. Trans. R. Soc. Lond. B, 333, 349358.Google Scholar
Brisman, K., Engel, M.H. & Macko, S.A. (2001). Precambrian Res. 106, 5977.CrossRefGoogle Scholar
Casadevall, A. (2005). Fungal Genetics Biol. 42, 98106.CrossRefGoogle Scholar
Cronin, J.R. & Pizzarello, S. (1997). Science 275, 951955.CrossRefGoogle Scholar
Ehrenfreund, P., Glavin, D.P., Botta, O., Cooper, G. & Bada, J.L. (2001). Proc. Natl. Acad. Sci. USA 98, 21382141.CrossRefGoogle Scholar
Engel, M.H. & Nagy, B. (1982). Nature 296, 837840.CrossRefGoogle Scholar
Gabrielli, P. et al. (2004). Nature 432, 10111014.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (1981). Evolution from Space, p. 176. Dent, London.Google Scholar
Keller, G. (2001). Planet. Space Sci. 49, 817830.CrossRefGoogle Scholar
Keller, J.W., Baurick, K.B., Rutt, G.C., O'Malley, M.V., Sonafrank, N.B., Reynolds, R.A., Ebbesson, L.O.E. & Vajdos, F.F. (1990). J. Biol. Chem. 265, 55315539.CrossRefGoogle Scholar
Napier, W.M. & Clube, S.V.M. (1979). Nature 282, 455.CrossRefGoogle Scholar
Pispisa, B., Stella, L., Venanzi, M., Palleschi, A., Viappiani, C., Polese, A. & Toniolo, C. (2000). Macromolecules 33(3), 906915.CrossRefGoogle Scholar
Ramadurai, S., Lloyd, D., Wallis, M.K. & Wickramasinghe, N.C. (1995). Adv. Space Res. 15(3), 139146.CrossRefGoogle Scholar
Wallis, M.K. (2003). Astrophys. Space Sci. 285, 587592.CrossRefGoogle Scholar
Wickramasinghe, N.C. & Wallis, M.K. (1994). Mon. Not. R. Astron. Soc. 270, 420426.CrossRefGoogle Scholar
Vajda, V. & McLoughlin, S. (2004). Science 303, 1489.CrossRefGoogle Scholar
Zahnle, K. & Grinspoon, D. (1990) Nature 348, 157160.CrossRefGoogle Scholar
Zhao, M. & Bada, D.L. (1989). Nature 339, 463465.CrossRefGoogle Scholar