Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-08T15:21:42.563Z Has data issue: false hasContentIssue false

Evolution of Precambrian life in the Brazilian geological record

Published online by Cambridge University Press:  18 June 2012

Thomas Rich Fairchild*
Affiliation:
Departamento de Geologia Sedimentar e Ambiental, Instituto de Geociências, Universidade de São Paulo. Rua do Lago, 562, Butantã, São Paulo, SP CEP 05508-080, Brazil
Evelyn A.M. Sanchez
Affiliation:
Programa de Pós-Graduação em Geoquímica e Geotectônica, Instituto de Geociências, Universidade de São Paulo. Rua do Lago, 562, Butantã, São Paulo, SP CEP 05508-080, Brasil
Mírian Liza A.F. Pacheco
Affiliation:
Programa de Pós-Graduação em Geoquímica e Geotectônica, Instituto de Geociências, Universidade de São Paulo. Rua do Lago, 562, Butantã, São Paulo, SP CEP 05508-080, Brasil
Juliana de Moraes Leme
Affiliation:
Departamento de Geologia Sedimentar e Ambiental, Instituto de Geociências, Universidade de São Paulo. Rua do Lago, 562, Butantã, São Paulo, SP CEP 05508-080, Brazil

Abstract

Precambrian rocks comprise nearly one-quarter of the surface of Brazil and range from Paleoarchean (ca. 3.6 Ga) to the latest Ediacaran (0.542 Ga) in age. Except for controversial phosphatized ‘embryo-like’ microfossils like those from the lower Ediacaran Doushantuo Formation, China and complex rangeomorphs, Brazilian research has revealed all major categories of Precambrian life forms described elsewhere – microbialites, biomarkers, silicified microfossils, palynomorphs, vase-shaped microfossils, macroalgae, metazoans, vendobionts and ichnofossils – but the paleobiological significance of this record has been little explored. At least four occurrences of these fossils offer promise for increased understanding of the following aspects of Precambrian biospheric evolution: (i) the relationship of microbialites in 2.1–2.4 Ga old carbonates of the Minas Supergroup in the Quadrilátero Ferrífero, Minas Gerais (the oldest Brazilian fossils) to the development of the early oxygenic atmosphere and penecontemporaneous global tectonic and climatic events; (ii) the evolutionary and biostratigraphic significance of Mesoproterozoic to Ediacaran organic-walled microfossils in central–western Brazil; (iii) diversity and paleoecological significance of vase-shaped heterotrophic protistan microfossils in the Urucum Formation (Jacadigo Group) and possibly the Bocaina Formation (Corumbá Group), of Mato Grosso do Sul; and (iv) insights into the record of skeletogenesis and paleoecology of latest Ediacaran metazoans as represented by the abundant organic carapaces of Corumbella and calcareous shells of the index fossil Cloudina, of the Corumbá Group, Mato Grosso do Sul. Analysis of the Brazilian Precambrian fossil record thus holds great potential for augmenting paleobiological knowledge of this crucial period on Earth and for developing more robust hypotheses regarding possible origins and evolutionary pathways of biospheres on other planets.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albani, A.E. et al. . (2010). Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature 466, 100104.CrossRefGoogle ScholarPubMed
Almeida, F.F.M.de (1984). Província Tocantins. Setor sudoeste. In O Pré-Cambriano do Brasil, ed. Almeida, F.F.M.de. & Hasuy, Y. (coord.) pp. 265281, São Paulo, Brazil, Edgard Blücher.Google Scholar
Alvarenga, C.J.S., Moura, C.A.V., Gorayeb, P.S.S. & Abreu, F.A.M. (2000). Paraguay and Araguaia Belts. In Tectonic Evolution of South America, ed. Cordani, U.G., Milani, E.J., Thomaz Filho, A. & Campos, D.A. (Org.), 31st International Geological Congress, Rio de Janeiro, vol. 1, 1st edn. p. 183193.Google Scholar
Alvarenga, C.J.S.de, Boggiani, P.C., Babinski, M., Dardenne, M.A., Figueiredo, M.F., Santos, R.V. & Dantas, E.L. (2009). The Amazonian paleocontinent. In Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: a Focus on Southwest Gondwana, ed. Gaucher, C., Sial, A.N., Halverson, G.P. & Frimmel, H.E. p. 498. Elsevier, Amsterdam.Google Scholar
Allwood, A.C., Walter, M.R., Kamber, B.S., Marshall, C.P. & Burch, I.W. (2006). Stromatolite reef from early Archean era of Australia. Nature 441, 714718.Google Scholar
Anbar, A.D. & Knoll, A.H. (2002). Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297(5584), 11371142.Google Scholar
Babcock, L.E., Grunow, A.M., Sadowski, G.R. & Leslie, S.A. (2005). Corumbella, an Ediacaran-grade organism from the Late Neoproterozoic of Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 220, 718.CrossRefGoogle Scholar
Babinski, M., Chemale, F. Jr. & Van Schmus, W.R. (1995). The Pb/Pb age of the Minas Supergroup carbonate rocks, Quadrilátero Ferrífero, Brazil. Precambrian Res. 72, 235245.CrossRefGoogle Scholar
Babinski, M., Trindade, R.I.F., Alvarenga, C.J.S., Boggiani, P.C., Liu, D., Santos, R.V. & Brito Neves, B.B. (2006). Cronology of neoproterozoic ice ages in Central Brazil. In Short Papers, Fifth South American Symposium on Isotope Geology, Punta del Leste, pp. 223226.Google Scholar
Babinski, M., Boggiani, P.C., Fanning, M., Simon, C.M. & Sial, A.N. (2008). U-Pb shrimp geochronology and isotope chemostratigraphy (C, O, Sr) of the Tamengo Formation, southern Paraguay belt, Brazil. In Proceedings of the Sixth South American Symposium on Isotope Geology, San Carlos de Bariloche, 2008, p. 160.Google Scholar
Barley, M.E., Bekker, A. & Krapez, B. (2005). Late Archean to early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen. Earth Planet Sci. Lett. 238, 156171.CrossRefGoogle Scholar
Bekker, A. & Eriksson, K.A. (2003). A Paleoproterozoic drowned carbonate platform on the southeastern margin of the Wyoming Craton: a record of the Kenorland breakup. Precambrian Res. 120, 327364.Google Scholar
Bekker, A., Kaufman, A.J., Karhu, J.A., Beukes, N.J., Swart, Q.D., Coetzee, L.L. & Eriksson, K.A. (2001). Chemostratigraphy of the Paleoproterozoic Duitschland Formation, South Africa: implications for coupled climate change and carbon cycling. Am. J. Sci. 301, 261285.Google Scholar
Bekker, A., Sial, A.N., Karhu, J.A., Ferreira, V.P., Noce, C.M., Kaufman, A.J., Romano, A.W. & Pimentel, M.M. (2003). Chemostratigraphy of carbonates from the Minas Supergroup, Quadrilatero Ferrífero (Iron Quadrangle), Brasil: a stratigraphic record of Early Proterozoic atmosphere, biogeochemical and climatic change. Am. J. Sci. 303, 865904.CrossRefGoogle Scholar
Bengtson, S. (1994). The advent of animal skeletons. In Early Life on Earth, ed. Bengtson, S., pp. 412425, Columbia University Press, New York.Google Scholar
Bengtson, S. & Zhao, Y. (1992). Predatorial borings in late Precambrian mineralized exoskeletons. Science 257, 367369.CrossRefGoogle ScholarPubMed
Bengtson, S., Rasmussen, B. & Krapez, B. (2007). The Paleoproterozoic megascopic Stirling biota. Paleobiology 33(3), 351381.Google Scholar
Bertolino, L.C. & Pires, F.R.M. (1995). Novas ocorrências de estruturas estromatolíticas nas rochas carbonáticas da Formação Gandarela, Quadrilátero Ferrífero, Minas Gerais. Anais do 8a Simpósio de Geologia de Minas Gerais, Boletim 13, 97.Google Scholar
Bloeser, B., Schopf, J.W., Horodyski, R.J. & Breed, W.J. (1977). Chitinozoans from the Late Precambrian Chuar Group of the Grand Canyon, Arizona. Science 18, 676679.Google Scholar
Boggiani, P.C. (1998). Análise Estratigráfica da Bacia Corumbá (Neoproterozóico) – Mato Grosso do Sul. Doctoral Thesis, Instituto de Geociências, Universidade de São Paulo, p. 181.Google Scholar
Boggiani, P.C. & Gaucher, C. (2004). Cloudina from Itapucumi Group (Vendian, Paraguay): age and correlation. In First Symposium on Neoproterozoic–Early Paleozoyc Events in SW-Gondwana, pp. 1315. Extended Abstracts, São Paulo.Google Scholar
Boggiani, P.C., Gaucher, C., Sial, A.N., Babinsky, M., Simon, C.M., Riccomini, C., Ferreira, V.P. & Fairchild, T.R. (2010). Chemostratigraphy of the Tamengo Formation (Corumbá Group, Brazil): a contribution to the calibration of the Ediacaran carbon-isotope curve. Precambrian Res. 182, 382401.CrossRefGoogle Scholar
Bosak, T., Lahr, D.J.G., Pruss, S.B., Msdonald, F.A., Dalton, L. & Matys, E. (2011). Agglutinated tests in post-Sturtian cap carbonates of Namibia and Mongolia. Earth Planet. Sci. Lett. 308, 2940.Google Scholar
Brain, C.K., Prave, A.R., Hoffmann, K., Fallick, A.E., Botha, A., Herd, D.A., Sturrock, C., Young, I., Condon, D.J. & Allison, S.G. (2012). The first animals: ca. 760-million-years-old-sponge-like fossils from Namibia. S. Afr. J. Sci. 108(1/2), 18.Google Scholar
Brasier, M.D. (1992). Background to the Cambrian explosion. J. Geol. Soc. 149, 585587.CrossRefGoogle Scholar
Brasier, M.D. & Antcliffe, J.B. (2009). Evolutionary relationships within the Avalonian Ediacara biota: new insights from laser analysis. J. Geol. Soc. 166, 363384.Google Scholar
Brasier, M.D., Cowie, J.W. & Taylor, M.E. (1994). Decision on the Precambrian–Cambrian boundary stratotype. Episodes 17, 38.CrossRefGoogle Scholar
Brasier, M., McLoughlin, N., Green, O. & Wacey, D. (2006). A fresh look at the fossil evidence for early Archaean cellular life. Philos. Trans. R. Br. Soc. 361, 887902.Google Scholar
Brocks, J.J., Logan, G.A., Buick, R. & Summons, R.E. (1999). Archean molecular fossils and the early rise of eukaryotes. Science 5439(285), 10331036.CrossRefGoogle Scholar
Budd, G.E. (2008). The earliest fossil record of animals and its significance. Phil. Trans. R. Soc. B. 363, 14251434.CrossRefGoogle ScholarPubMed
Butterfield, N.J. (2000). Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the mesoproterozoic/neoproterozoic radiation of eukaryotes. Paleobiology 26(3), 386404.Google Scholar
Butterfield, N.J. (2011). Terminal developments in Ediacaran embryology. Science 334, 16551696.CrossRefGoogle ScholarPubMed
Burns, S.J. & Matter, A. (1993). Carbon isotope record of the latest Proterozoic from Oman. Eclogae Geol. Helv. 86(2), 595607.Google Scholar
Buss, L.W. & Seilacher, A. (1994). The Phylum Vendobionta: a sister group of the Eumetazoa? Paleobiology 20, 14.CrossRefGoogle Scholar
Canfield, D.E. (1998). A new model for Proterozoic ocean chemistry. Nature 369, 450453.CrossRefGoogle Scholar
Canfield, D.E., Poulton, S.W., Knoll, A.H., Narbonne, G.M., Ross, G., Goldberg, T. & Strauss, H. (2008). Ferruginous conditions dominated later neoproterozoic deep-water chemistry. Science 321, 949952.CrossRefGoogle ScholarPubMed
Catling, D.C. & Claire, M.W. (2005). How Earth´s atmosphere evolved to an oxic state: a status report. Earth Planet. Sci. Lett. 237(1–2), 120.Google Scholar
Catling, D.C., Glein, C.R., Zahnle, K.J. & McKay, C.P. (2005). Why O2 is required by complex life on habitable planets and the concept of planetary ‘oxygenation time’. Astrobiology 5, 415438.CrossRefGoogle ScholarPubMed
Chen, J.Y., Bottjer, D.J., Oliveri, P., Dornbos, S.Q., Gao, F., Ruffins, S., Chi, H., Li, C.W. & Davidson, E.H. (2004). Small bilaterian fossils from 40 to 55 million years before the Cambrian. Science 305, 218222.CrossRefGoogle ScholarPubMed
Chen, Z., Bengtson, S., Zhou, C.M., Hua, H. & Yue, Z. (2008). Tube structure and original composition of Sinotubulites: shelly fossils from the late Neoproterozoic in southern Shaanxi, China. Lethaia 41, 3745.CrossRefGoogle Scholar
Chen, J.Y. et al. . (2009). Phase contrast synchrotron X-ray microtomography of Ediacaran (Doushantuo) metazoan microfossils: phylogenetic diversity and evolutionary implications. Precambrian Res. 173, 191200.Google Scholar
Ciguel, J.H.G., Góis, J.R. & Aenolaza, F.G. (1992). Ocorrêcia de icnofósseis em depositos molássicos da Formação Camarinha (Neoproterozoico III – Cambriano Inferior), no Estado do Paraná, Brasil. Serie Correl. Geol. 9, 157158.Google Scholar
Clapham, M.E. & Narbonne, G.M. (2002). Ediacaran epifaunal tiering. Geology 30, 627630.2.0.CO;2>CrossRefGoogle Scholar
Cohen, P.A., Knoll, A.H. & Kodner, R.B. (2009). Large spinose microfossils in Ediacaran rocks as setting stages of early animals. Proc. Natl. Acad. Sci. U.S.A. 106, 65196524.CrossRefGoogle Scholar
Conway Morris, S. (1992). Burgess Shale-type faunas in the context of the ‘Cambrian explosion’: a review. J. Geol. Soc. 146, 631636.CrossRefGoogle Scholar
Conway Morris, S. (2000). Evolution: bringing molecules into the fold. Cell 100, 111.Google Scholar
Conway Morris, S., Mattes, B.W. & Menge, C. (1990). The early skeletal organism Cloudina: new occurrences from Oman and possibly China. J. Sci. 290, 245260.Google Scholar
Couëffé, R. & Vecoli, M. (2011). New sedimentological and biostratigraphic data in the Kwahu Group (Meso- to Neo- Proterozoic), southern margin of the Volta Basin, Ghana: stratigraphic constraints and implications on regional lithostratigraphic correlations. Precambrian Res. 189, 155175.CrossRefGoogle Scholar
Da Rosa, A.A.S., Paim, P.S.G., Chemale, F. Jr., Zucatti Da Rosa, A.L. & Girardi, R.V. (1997). The ‘state-of-art’ of the Cambrian Itajaí Basin (Southern Brazil). In 18° IAS Regional European Meeting of Sedimentology, Heidelberg, September 2–4, 1997, p. 112.Google Scholar
Dardenne, M.A. & Campos Neto, M.C. (1975). Estromatólitos colunares na série Minas (MG). Rev. Brasil. Geoci. 5, 99105.Google Scholar
Droser, M.L., Gehling, J.G. & Jensen, S.R. (2006). Assemblage palaeoecology of the Ediacara biota: the unabridged edition? Palaeogeogr. Palaeoclimatol. Palaeoecol. 232(2–4), 131147.CrossRefGoogle Scholar
Drukas, C.O. & Basei, M.A.S. (2009). Proveniência e idade dos sedimentos do Grupo Itajaí, SC, Brasil. In Boletim de Resumos Expandidos, Simpósio 45 anos de Geocronologia no Brasil, expanded abstract 1, pp. 239241.Google Scholar
Dzik, J. (2003). Anatomical information content in the Ediacaran fossils and their possible zoological affinities. Integr. Comp. Biol. 43, 114126.Google Scholar
Erwin, D.H. & Tweedt, S. (2011). Ecological drivers of the Ediacaran-Cambrian diversification of Metazoa. Evol. Ecol. 26, 417433.Google Scholar
Erwin, D.H., Laflamme, M., Tweedt, S.M., Sperling, E.A., Pisani, D. & Peterson, K.J. (2011). The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334(6059), 10911097.Google Scholar
Fairchild, T.R., Barbour, A.P. & Haralyi, N.L.E. (1978). Microfossils in the ‘Eopaleozoic’ Jacadigo Group at Urucum, Mato Grosso, Southwest Brazil. Bol. Inst. Geoci. 9, 7479.Google Scholar
Fedonkin, M.A. (2003). The origin of the Metazoa in the light of the Proterozoic fossil record. Palaeontol. Res. 7, 941.CrossRefGoogle Scholar
Fedonkin, M.A. & Waggoner, B.M. (1997). The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature 388, 868871.CrossRefGoogle Scholar
Fedonkin, M.A., Simonetta, A. & Ivantsov, A.Y. (2007). New data on Kimberella, the Vendian mollusk-like organism (White Sea region, Russia): palaeoecological and evolutionary implications. Geol. Soc., Lond., Sp. Publ. 286, 157179.CrossRefGoogle Scholar
Fontaneta, G.T. (2012). Dolomitização e fosfogênese na Formação Bocaina, Grupo Corumbá (Ediacarano). Master's Degree Dissertation, Instituto de Geociências, Universidade de São Paulo, p. 139.Google Scholar
Freitas, B.T., Warren, L.V., Boggiani, P.C., De Almeida, R.P. & Piacentini, T. (2011). Tectono-sedimentary evolution of the Neoproterozoic BIF-bearing Jacadigo. Sediment. Geol. 238, 4870.CrossRefGoogle Scholar
Gaucher, C. & Germs, G.J.B. (2006). Recent advances in South African Neoproterozoic-Early Palaeozoic biostratigraphy: correlation of the Cango Cavez and Gamtoos Groups and acritarchs of the Sardinia Bay Formation, Saldania Belt. S. Afr. J. Geol. 109, 193214.CrossRefGoogle Scholar
Gaucher, C., Boggiani, P.C., Sprechman, P., Sial, A.N. & Fairchild, T.R. (2003). Integrated correlation of the Vendian to Cambrian Arroyo del Soldado and Corumbá Groups (Uruguay and Brazil): palaeogeographic, paaleoclimatic and palaeobiologic implications. Precambrian Res. 120, 241278.Google Scholar
Gaucher, C., Frimmel, H.E. & Germs, G.J.B. (2005). Organic-Walled microfossils and biostratigraphy of the upper Port Nolloth Group (Namibia): implications for latest Neoproterozoic glaciations. Geol. Mag. 142, 539559.Google Scholar
Germs, G.J.B. (1972). New shelly fossils from Nama Group, South West Africa. Am. J. Sci. 272, 752761.Google Scholar
Germs, G.J.B. (1983). Implications of a sedimentary facies and depositional environmental analysis of the Nama Group in South West Africa. Geol. Soc. S. Afr. Spec. Publ. 11, 89114.Google Scholar
Grant, S.W.F. (1990). Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. Am. J. Sci. 290, 261294.Google Scholar
Grey, K. (2005). Ediacaran palynology of Australia. Mem. Assoc. Australas. Palaeontol. 31, 439.Google Scholar
Grotzinger, J.P., Watters, W.A. & Knoll, A.H. (2000). Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology 26(3), 334359.Google Scholar
Guadagnin, F., Chemale, F. Jr., Dussin, I.A., Jelinek, A.R., Santos, M.N., Borba, M.L., Justino, D., Bertotti, A.L. & Alessandretti, L. (2010). Depositional age and provenance of the Itajaí Basin, Santa Catarina State, Brazil: implications for SW Gondwana correlation. Precambrian Res. 180, 156182.CrossRefGoogle Scholar
Hagadorn, J.W. & Waggoner, B. (2000). Ediacaran fossils from the southwestern Great Basin, United States. J. Paleontol. 74, 349359.2.0.CO;2>CrossRefGoogle Scholar
Hahn, G. & Pflug, H.D. (1985). Die Cloudinidae n. fam., Kalk-Rfhren aus dem Vendium und Unter-Kambrium. Senckenbergiana Lethaea 65, 413431.Google Scholar
Hahn, G., Hahn, R., Leonardos, O.H., Pflug, H.D. & Walde, D.H.G. (1982). Kfrperlich erhaltene Scyphozoen-Reste aus dem Jungprekambrium Brasiliens. Geol. Paleontol. 16, 118.Google Scholar
Hallam, A. (1984). Pre-quaternary sea-level changes. Annu. Rev. Earth Planet. Sci. 12, 205243.Google Scholar
Halverson, G.P., Hurtgen, M.T., Porter, S.M. & Collins, A.S. (2009). Neoproterozoic-Cambrian biogeochemical evolution. In Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: a Focus on Southwestern Gondwana, ed. Gaucher, C., Sial, A.N., Halverson, G.P. & Frimmel, H.E., vol. 16, pp. 351365. Developments in Precambrian Geology. Elsevier, the Netherlands.Google Scholar
Han, T.M. & Runnegar, B. (1992). Megascopic eukariotik algae from the 2.1- billion-year-old negaunee iron-formation, Michigan. Science 257, 232235.CrossRefGoogle ScholarPubMed
Heaman, L.M. (1997). Global mafic magmatism at 2.45 Ga: remnants of an ancient large igneous province? Geology 25, 299302.Google Scholar
Hidalgo, R.L.L. (2007). Vida após as glaciações globais neoproterozóicas: um estudo microfossifífero de capas carbonáticas dos Crátons do São Francisco e Amazônico. Doctoral Thesis, Instituto de Geociências, Universidade de São Paulo, p. 195.Google Scholar
Hofmann, H.J. & Chen, J. (1981). Carbonaceous megafossils from the Precambrian (1800 Ma) near Jixian, northern China. Can. J. Earth Sci. 18(3), 443447.CrossRefGoogle Scholar
Hofmann, H.J. & Mountjoy, E.W. (2001). Namacalathus-Cloudina assemblage in Neoproterozoic Miette Group (Byng Formation), British Columbia: Canada´s oldest shelly fossils. Geology 29(12), 10911094.Google Scholar
Hoffman, P.F. & Schrag, D.P. (2002). The snowball earth hypothesis: testing the limits of global change. Terra Nova 14, 129155.CrossRefGoogle Scholar
Hoffman, P.F., Kaufman, A.J., Halverson, G.P. & Schrag, D.P. (1998). A Neoproterozoic Snowball Earth. Science 281, 13421346.Google Scholar
Holland, H.D. (2002). Volcanic gases, black smokers, and great oxidation event. Geochim. Cosmochim. Acta 66(21), 38113826.Google Scholar
Holland, H.D. (2009). Why the atmosphere became oxygenated: a proposal. Geochim. Cosmochim. Acta 73(18), 52415255.CrossRefGoogle Scholar
Hua, H., Pratt, B.R. & Zhang, L.Y. (2003). Borings in Cloudina shells: complex predator − prey dynamics in the terminal Neoproterozoic. Palaios 18, 454459.2.0.CO;2>CrossRefGoogle Scholar
Hua, H., Chen, Z., Yuan, X., Zhang, L. & Xiao, S. (2005). Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina. Geology 33, 277280.Google Scholar
Huldtgren, T., Cunninghan, J.A., Yin, C., Stampanoni, M., Marone, F., Donoghue, P.C.J. & Bengtson, S. (2011). Fossilized nuclei and germination structures identify Ediacaran ‘animal Embryos’ as encysting protists. Science 334, 16961699.CrossRefGoogle ScholarPubMed
Huntley, J.W., Xiao, S. & Kowalewski, M. (2006). 1.3 Billion years of acritarch history: an empirical morphospace approach. Precambrian Res. 144, 5268.Google Scholar
Igisu, M., Ueno, Y., Shimojima, M., Nakashima, S.M., Awramik, S.M., Ohta, H. & Maruyama, S. (2009). Micro-FTIR spectroscopic signatures of bacterial lipids in proterozoic microfossils. Precambrian Res. 173, 1926.Google Scholar
Javaux, E.J., Knoll, A.H. & Walter, M.R. (2003). Recognizing and interpreting the fossils of early eukaryoter. Origins Life Evol. Biosph. 33, 7594.CrossRefGoogle Scholar
Karlstrom, K.E. et al. , (2000). Chuar Group of the Grand Canyon: Record of breakup of Rodinia, associated change in the global carbon cycle, and ecosystem expansion by 740 Ma. Geology 28(7), 619622.Google Scholar
Kasting, J.F., Pavlov, A.A. & Siefert, J.L. (2001). A coupled ecosystem-climate model for predicting the methane concentration in the Archean atmosphere. Origins Life Evol. Biosph. 31, 271285.Google Scholar
Kirschvink, J.L., Gaidos, E.J., Bertani, L.E., Beukes, N.J., Gutzmer, J., Maepa, L.N. & Steinberger, R.E. (2000). Paleoproterozoic snowball Earth: extreme climatic and geochemical global change and its biological consequences. Proc. Natl. Acad. Sci. U.S.A. 97, 14001405.Google Scholar
Knoll, A.H. (2003). Life on a Young Planet – The First Three Billion Years of Evolution on Earth, p. 277. Princeton University Press, Princeton/Oxford.Google Scholar
Knoll, A.H. & Bambach, R.K. (2000). Directionality in the history of life: diffusion from the left wall or repeated scaling of the right? Paleobiology 26(4), 114.Google Scholar
Knoll, A.H., Javaux, E.J., Hewitt, D. & Cohen, P. (2006). Eukaryotic organisms in Proterozoic oceans. Phil. Trans. R. Soc. 361, 10231038.Google Scholar
Kontorovich, A.E. et al. (2008). A section of Vendian in the east of West Siberian Plate (based on data from the Borehole Vostok 3). Russ. Geol. Geophys. 49, 932939.CrossRefGoogle Scholar
Kopp, R.E., Kirschvink, J.L., Hilburn, I.A. & Nash, C.Z. (2005). The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl. Acad. Sci. U.S.A. 102, 1113111136.CrossRefGoogle ScholarPubMed
Laflamme, M., Xiao, S. & Kowalewski, M. (2009). Osmotrophy in modular Ediacara organisms. Proc. Natl. Acad. Sci. U.S.A. 106(34), 1443814443.Google Scholar
Lamb, D.M., Awramik, S.M., Chapman, D.J. & Zhu, S. (2009). Evidence for eukaryotic diversification in the 180 million year old Changzhougou Formation, North China. Precambrian Res. 173, 93104.CrossRefGoogle Scholar
Leipnitz, I.I., Paim, P.S.G., Da Rosa, A.A.S., Zucatti Da Rosa, A.L. & Nowatzki, C.H. (1997). Primeira Ocorrência de Chancelloriidae no Brasil. In Congresso Brasileiro de Paleontologia. Boletim de Resumos, p. 1.Google Scholar
Love, G.D. et al. (2009). Fossil steroids record the apparence of demospongiae during the cryogenian period. Nature 457, 718721.CrossRefGoogle Scholar
Lowenstein, T.K., Timofeeff, M.N., Brennan, S.T., Hardie, L.A. & Demicco, R.V. (2001). Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science 294, 10861088.CrossRefGoogle ScholarPubMed
McFadden, K.A., Xiao, S., Zhou, C. & Kowalewski, M. (2009). Quantitative evaluation of the biostratigraphic distribution of acanthomorphic acritarchs in the Ediacaran Doushantuo formation in the Yangtze Gorges area, South China. Precambrian Res. 173, 170190.Google Scholar
McKerrow, W.S., Scotese, C.R. & Brasier, M.D. (1992). Early Cambrian continental reconstructions. J. Geol. Soc., London 149(4), 599606.CrossRefGoogle Scholar
Meira, F.V.E. (2011). Caracterização Tafonômica e estratigráfica de Cloudina lucianoi (Beurlen & Sommer, 1957) Zaine & Fairchild, 1985, no Grupo Corumbá, ediacarano do sudeste do Brasil. Master´s Degree Dissertation, Instituto de Geociências, Universidade de São Paulo, p. 115.Google Scholar
Mills, B., Watson, A.J., Goldbatt, C., Boyle, R. & Lenton, T.M. (2011). Timing of Neoproterozoic glaciations linked to transport-limited global weathering. Nature Geosci. 4, 861864.Google Scholar
Moczydlowska, M. (2005). Taxonomic review of some Ediacaran acritarchs from the Siberian platform. Precambrian Res. 136(3–4), 283307.Google Scholar
Moczydlowska, M. (2008a). New records of late Ediacaran microbiota from Poland. Precambrian Res. 167, 7192.Google Scholar
Moczydlowska, M. (2008b). The Ediacaran microbiota and the survival of Snowball Earth conditions. Precambrian Res. 167(1–2), 115.Google Scholar
Mojzsis, S.J., Arrhenius, G., Mckeegan, K.D., Harrison, T.M., Nutman, A.P. & Friend, C.R.L. (1996). Evidence for life on Earth before 3,800 million years ago. Nature 384, 5559.Google Scholar
Nagy, R.M., Porter, S.M., Dehler, C.M. & Shen, Y. (2009). Biotic turnover driven by eutrophication before the Sturtian low-latitude glaciation. Nature GeoSci. 2, 415418.Google Scholar
Narbonne, G.M. (2004). Modular construction of early Ediacaran complex life forms. Science 305, 11411144.Google Scholar
Narbonne, G.M. (2005). Neoproterozoic origin of animals and their ecosystems. Annu. Rev. Earth Planet. Sci. 33, 421442.Google Scholar
Narbonne, G.M. (2011). When life got big. Nature 470, 339340.Google Scholar
Netto, R.G. & Zucatti Da Rosa, A.L. (1997). Registro icnofossilífero da Bacia do Itajaí, SC: Uma primeira visão. In Congresso Brasileiro de Paleontologia, 15, Boletim de Resumos, p. 136.Google Scholar
Netto, R.G., Paim, P.S.G. & Da Rosa, C.L.M. (1992). Informe preliminar sobre a ocorrência de traços fósseis nos sedimentitos das bacias do Camaquã e Santa Barbara. In I Workshop sobre Bacias Molássicas Brasilianas, São Leopoldino, RS, agosto de 1992, expanded abstracts: 90–96.Google Scholar
Nogueira, A.C.R., Riccomini, C., Sial, A.N., Moura, C.A.V., Trindade, R.I.F. & Fairchild, T.R. (2007). Carbon and strontium isotope fluctuations and paleocean changes in the Late Neoproterozoic Araras carbonate platform, southern Amazon Craton, Brazil. Chem. Geol. 237, 168190.Google Scholar
Nogueira, V.L. et al. (1998). Projeto Bonito-Aquidauana. Relatório final. Goiânia, DNPM/CPRM, 14 v. (Relatório do Arquivo Técnico da DGM, 2744).Google Scholar
Nutman, A.P. (2007). Apatite recrystallisation during prograde metamorphism, Cooma, SE Australia: implications for using apatite-graphite association as a biotracer in ancient metasedmients. Austr. J. Earth Sci. 54, 10231032.Google Scholar
Oehler, D.Z., Robert, F., Walter, M.R., Sugitani, K., Allwood, A., Meibom, A., Mostefaoui, S., Selo, M., Thomen, A. & Gibson, E.K. (2009). NanoSIMS: Insights to biogenicity and syngeneity of Archean carbonaceous structures. Precambrian Res. 173, 7078.Google Scholar
Ohmoto, H. (2003). Reply to comments by H. D. Holland on ‘The oxygen geochemical cycle: Dynamics and stability’. Geochim. Cosmochim. 67(4), 791795.Google Scholar
Olcott, A.N., Sessions, A.L., Corsetti, F.A., Kaufman, A.J. & Oliveira, T.F. (2005). Biomarker evidence for photosynthesis during Neoproterozoic glaciation. Science 310, 471474.Google Scholar
Oliveira, R.S. (2010). Depósitos de Rampa carbonática neoproterozóica do Grupo Corumbá, região de Corumbá, Mato Grosso. Instituto de Geociências, Universidade Federal do Pará, Belém, PA, Brazil. p. 88.Google Scholar
Pacheco, M.L.A.F. (2011). Raman spectra of the Ediacaran fossil Corumbella werneri Hahn et al. (1982). In São Paulo Advanced School of Astrobiology, 2 São Paulo, SP. Abstracts, 2011, v. 1.Google Scholar
Pacheco, M.L.A.F., Leme, J.M. & Fairchild, T.R. (2010a). Re-evaluation of the morphology and systematic affinities of Corumbella werneri Hahn et al. 1982, Tamengo Formation (Ediacaran), Corumbá, Brazil. In X Congreso Argentino de Paleontología y Bioestratigrafía, VII Congreso Latinoamericano de Paleontología, La Plata, Argentina, Libro de resúmenes, p. 193.Google Scholar
Pacheco, M.L.A.F., Leme, J.M. & Fairchild, T.R. (2010b). Reinterpretação de atributos morfológicos de Corumbella werneri Hahn et al. 1982 (Formação Tamengo, Bacia Corumbá, Mato Grosso do Sul) por meio de uma análise tafonômica básica. In PALEO SP 2010, Reunião Anual da Sociedade Brasileira de Paleontologia, Rio Claro. Livro de resumos da PALEO SP 2010, Reunião Anual da Sociedade Brasileira de Paleontologia, 2010. CD-Rom.Google Scholar
Pacheco, M.L.A.F., Leme, J.M. & Machado, A.F. (2011a). Taphonomic analysis and geometric modelling for the reconstruction of the Ediacaran metazoan Corumbella werneri Hahn et al. 1982 (Tamengo Formation, Corumbá Group, Brazil). J. Taphon. 9(4), available online.Google Scholar
Pacheco, M.L.A.F., Leme, J.M. & Fairchild, T.R. (2011b). Análise tafonômica de Corumbella werneri Hahn et al. 1982 (Formação Tamengo, Grupo Corumbá, Mato Grosso do Sul): alterações morfológicas e implicações no estabelecimento de afinidades taxonômicas. In XXII Congresso Brasileiro de Paleontologia, Natal, RN. Atas do XXII Congresso Brasileiro de Paleontologia, 2011, vol. 22, pp. 449452.Google Scholar
Paim, P.S.G., Leipnitz, I., Netto, R.G., Da Rosa, A.A.S. & Zucatti Da Rosa, A.L. (1997). Preliminary report on the occurrence of Chancelloria sp.in the Itajaí Basin, Southern Brazil. Rev. Brasil. Geoci. 27(3), 303308.CrossRefGoogle Scholar
Palacios, T. (1989). Microfósiles de pared orgánica del Proterozoico superior (region central de la Península Ibérica). Mem. Museo Paleontol. Univ. Zaragoza 3(2), 191.Google Scholar
Pavlov, A.A., Kasting, J.F., Brown, L.L., Rages, K.A. & Freedman, R. (2000). Greenhouse warning CH4 in the atmosphere of early Earth. J. Geophys. Res. 105, 981990.Google Scholar
Pell, S.D., McKirdy, D.M., Jansyn, J. & Jenkins, R.J.F. (1993). Ediacaran carbon isotope stratigraphy of South Australia – an initial study. Trans. R. Soc. S. Austr. 117(4), 153161.Google Scholar
Peng, Y., Bao, H. & Yuan, X. (2009). New morphological observations for Paleoproterozoic acritarchs from Chuanlinggou Formation, North China. Precambrian Res. 168, 223232.Google Scholar
Peterson, K.J. & Butterfield, N.J. (2005). Origin of the Eumetazoa: testing ecological predictions of molecular clocks against Proterozoic fossil record. Proc. Natl. Acad. Sci. U.S.A. 102, 95479552.CrossRefGoogle ScholarPubMed
Peterson, K.J., Cotton, J.A., Gehling, J.G. & Pisani, D. (2008). The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil record. Phil. Trans. R. Soc. B: Biol. Sci. 363(1469), 14351443.Google Scholar
Pierrehumbert, R.T., Abbot, D.S., Voigt, A. & Knoll, D. (2011). Climate of the Neoproterozoic. Annu. Rev. Earth Planet Sci. 39, 417460.Google Scholar
Pimentel, M.M., Rodrigues, J.B., Giustina, M.E.S.D. & Junges, S.L. (2009). Evolução Geológica da Faixa Brasília com base em dados de proveniência de sedimentos detríticos usando LAM-ICPMS. In XI Simpósio de Geologia do Centro-Oeste, Programa de resumos: Cuiabá, Mato Grosso, Brazil, p. 31.Google Scholar
Porter, S.M. (2004). The fossil record of early eukaryotic diversification. Paleontol. Soc. Papers 10, 3550.Google Scholar
Porter, S.M. (2011). The rise of predators. Geology 39(6), 607608.Google Scholar
Porter, S.M. & Knoll, A.H. (2000). Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology 26(3), 360385.Google Scholar
Porter, S.M., Meisterfeld, R. & Knoll, A. (2003). Vase-shapedd microfossils from the neoproterozoic chuar group, grand canyon: a classification guided by modern testate amoebae. J. Paleontol. 77(3), 409429.Google Scholar
Rasmussen, B., Fletcher, I.R., Brocks, J.J. & Kilburn, M.R. (2008). Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455, 11011104.Google Scholar
Rothman, D.H., Hayes, J.M. & Summons, R.E. (2003). Dynamics of the Neoproterozoic carbon cycle. Proc. Natl. Acad. Sci. U.S.A. 100(14), 81248129.Google Scholar
Sallun-Filho, W. & Fairchild, T.R. (2005). Um passeio pelo passado no shopping: estromatólitos no Brasil. Rev. Ciênc. Hoje 37, 2229.Google Scholar
Sanchez, E.A.M. & Fairchild, T.R. (2012). Raman spectroscopy as an useful tool for fossil biogenicity questions: example from Goiás, Brazil. In Workshop on Applied Raman Spectrscopy, oral communication, 23–25 April, 2012, São Paulo, Brazil.Google Scholar
Schidlowski, M. (2001). Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Res. 106(1–2), 117134.Google Scholar
Schobbenhaus, C. & Brito-Neves, B.B. (2003). A geologia do Brasil no contexto da Plataforma Sul-Americana. In Geologia, Tectônica e Recursos Minerais do Brasil, ed. Bizzi, L.A., Schobbenhaus, C., Vidotti, R.M. & Alves, J.H., pp. 554. Companhia de Pesquisa de Recursos Minerais – Geological Survey of Brazil, Brasília.Google Scholar
Schopf, J.W. (2006). The first billion years: when did life emerge? Elements 2, 229233.Google Scholar
Schopf, J.W. & Kudryavtsev, A.B. (2009). Confocal laser scanning microscopy and Raman imagery of ancient microscopic fossils. Precambrian Res. 173, 3949.Google Scholar
Seilacher, A. (1989). Vendozoa: organic construction in the Proterozoic biosphere. Lethaia 2, 229239.Google Scholar
Seilacher, A. (1999). Biomat-related lifestyles in the Precambrian. Palaios 14, 8693.CrossRefGoogle Scholar
Seilacher, A. (2007). The nature of vendobionts. In The rise and fall of Ediacaran Biota, ed. Vickers-Rich, P. & Komarower, P., vol. 286, pp. 387397. Geological Society, London, Special Publications.Google Scholar
Seilacher, A., Grazhdankin, D. & Legouta, A. (2003). Ediacaran biota: the dawn of animal life in the shadow of giant protists. Paleontol. Res. 7(1), 4354.Google Scholar
Sergeev, V.N. (2006). The importance of Precambrian microfossils for modern biostratigraphy. Paleontol. J. 40(5), 664673.Google Scholar
Shen, Y., Zhang, T. & Hoffman, P.F. (2008). On the coevolution of Ediacaran oceans and animals. Proc. Natl. Acad. Sci. U.S.A. 105(21), 73767381.Google Scholar
Shields-Zhou, G. & Och, L. (2011). The case for a Neoproterozoic oxygenation event: geochemical evidence and biological consequences. GSA Today 3(21), 411.CrossRefGoogle Scholar
Silva, L.C. & Dias, A.deA. (1981). Os segmentos mediano e setentrional do Escudo Catarinens. In Congresso Brasileiro de Geologia, Anais, pp. 25902598.Google Scholar
Simon, C.M. 2007. Quimioestratigrafia isotópica (C, O, Sr) dos carbonatos da Formação Tamengo, Grupo Corumbá, MS. Instituto de Geociências, Universidade de São Paulo, end of course paper, p. 43.Google Scholar
Simonetti, C. (1994). Paleobiologia de sedimentos Meso e Neoproterozoicos da porção meridional do Cráton do São Francisco. Master's Degree Dissertation, Instituto de Geociências, Universidade de São Paulo, p. 137Google Scholar
Simonetti, C. & Fairchild, T.R. (2000). Proterozoic microfossils from subsurface siliciclastic rocks of the São Francisco Craton, south-central Brazil. Precambrian Res. 103, 129.Google Scholar
Souza, P.C. & Müller, G. (1984). Primeiras estruturas algais comprovadas na Formação Gandarela, Quadrilátero Ferrífero. Rev. Esc. Minas 37(2), 1321.Google Scholar
Urban, H., Stribrny, B. & Lippolt, H. (1992). Iron and manganes deposits of the urucum district, Mato Grosso do Sul, Brazil. Econ. Geol. 87, 13751392.CrossRefGoogle Scholar
Vieira, L.C., Trindade, R.I.F., Nogueira, A.C.R. & Ader, M. (2007). Identification of a Sturtian cap carbonate in the Neoproterozoic Sete Lagoas carbonate platform, Bambuí Group, Brazil. C. R. Geosci. 339, 240258.Google Scholar
Wacey, D., Kilburn, M., Saunders, M., Cliff, J. & Brasier, M.D. (2011). Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nature Geosci. 4, 698702.Google Scholar
Waldbauer, J.R., Sherman, L.S., Summer, D.Y. & Summons, R.E. (2009). Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Res. 169, 2847.CrossRefGoogle Scholar
Walde, D.H.G., Leonardos, O.H., Hahn, G., Hahn, R. & Pflug, H. (1982). The first Precambrian megafossil from South América, Corumbella werneri. An. Acad. Bras. Ciênc. 54(2), 461.Google Scholar
Warren, L.V. (2011). Evolução de sucessões Sedimentares Proterozóicas no Paraguai Setentrioanal. Doctoral Thesis, Universidade de São Paulo, p. 257.Google Scholar
Warren, L.V., Fairchild, T.R., Gaucher, C., Boggiani, P.C., Poiré, D.G., Anelli, L.E. & Inchausti, J.C.G. (2011). Corumbella and in situ Cloudina in association with thrombolites in the Ediacaran Itapucumi Group, Paraguay. Terra Nova 23, 382389.CrossRefGoogle Scholar
Warren, L.V., Pacheco, M.L.A.F., Fairchild, T.R., Simões, M.G., Riccomini, C., Boggiani, P.C. & Cáceres, A.A. (2012) The Dawn of animal skeletogenesis: ultrastructural analysis of Ediacaran metazoan Corumbella werneri. Geology (In press).Google Scholar
Westall, F. (2005). Early life on earth and analogies to mars. In Advances in Astrobiology and Biophysics Series, ed. Tokano, T., p. 45. Springer-Verlag, Berlin.Google Scholar
Willman, S. & Moczydlowska, M. (2008). Ediacaran acritarch biota from the Giles 1 drillhole, Officer Basin, Australia, and its potential for biostratigraphic correlation. Precambrian Res. 162, 498530.Google Scholar
Wood, R.A. (2011). Paleoecology of the earliest skeletal metazoan communities: Implications for early biomineralization. Earth-Sci. Rev. 106(1–2), 184190.CrossRefGoogle Scholar
Xiao, S. & Knoll, A.H. (2000). Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation in Weng'an, Guizhou, South China. J. Paleontol. 74(5), 767788.Google Scholar
Xiao, S. & Laflamme, M. (2009). On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends Ecol. Evol. 24, 3140.Google Scholar
Xiao, S., Yuan, X. & Knoll, A.H. (2000). Eumetazoan fossil in terminal Proterozoic phosphorites? Proc. Natl Acad. Sci. U.S.A. 97(25), 1368413689.Google Scholar
Yan, Y. (1991). Shale-facies microflora from Changzhougou Formation (Changcheng System) in Pangjiapu Region, Hebei, China. Acta Micropaleontol. Sin. 8(2), 183195.Google Scholar
Yuan, X., Chen, Z., Xiao, S., Zhou, C. & Hua, H. (2011). An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature 470, 390393.CrossRefGoogle ScholarPubMed
Zaine, M.F. (1991). Analise dos fósseis de parte da Faixa Paraguai (MS, MT) e seu contexto temporal e paleoambiental. Doctoral Thesis, Instituto de Geociências, Universidade de São Paulo, p. 218.Google Scholar
Zaine, M.F. & Fairchild, T.R. (1987). Novas considerações sobre os fósseis da Formação Tamengo, Grupo Corumbá, SW do Brasil. In X Congresso Brasileiro De Paleontologia, Anais, Rio de Janeiro, vol. 2, pp. 797806.Google Scholar
Zaine, M.F., Simonetti, C. & Fairchild, T.R. (1989). Estudo micropaleontológico de vased-shaped microfossils da Fm. Urucum, Grupo Jacadigo, Mato Grosso do Sul. In XI Congresso Brasileiro de Paleontologia, Curitiba, Resumo das Comunicações, vol. 1, pp. 67.Google Scholar
Zang, W. (1995). Early Neoproterozoic sequence stratigraphy and acritarch biostratigraphy, eastern Officer Basin, South Australia. Precambrian Res. 74, 119175.Google Scholar
Zhang, Z. (1986). Clastic facies microfossils from Chuanlinggou Formation (1800 Ma) near Jixian, North China. J. Micropaleontol. 5(2), 916.Google Scholar
Zhou, C.M., Xie, G.W., McFadden, K., Xiao, S.H. & Yuan, X.L. (2007). The diversification and extinction of Doushantou–Pertatataka acritarchs in South China: cause and biostratigraphic significance. Geol. J. 42, 229262.Google Scholar
Zucatti Da Rosa, A.L. (2005). Evidências de vida no Ediacarano Inferior da Bacia do Itajaí, SC, Master´s Degree Dissertation, Centro de Ciências Exatas e Tecnológicas, Universidade do Vale do Rio dos Sinos, p. 56.Google Scholar