Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T04:20:04.581Z Has data issue: false hasContentIssue false

The Earth as an extrasolar planet: the vegetation spectral signature today and during the last Quaternary climatic extrema

Published online by Cambridge University Press:  26 February 2009

Luc Arnold
Affiliation:
Observatoire de Haute Provence CNRS INSU, 04870 Saint-Michel-l'Observatoire, France e-mail: [email protected]
François-Marie Bréon
Affiliation:
CEA-DSM-LSCE, 91191 Gif-sur-Yvette, France
Simon Brewer
Affiliation:
CEREGE, BP 80, 13545Aix-en-Provence Cedex 04, France

Abstract

The so-called vegetation red-edge (VRE), a sharp increase in the reflectance around 700 nm, is a characteristic of vegetation spectra, and can therefore be used as a biomarker if it can be detected in an unresolved extrasolar Earth-like planet integrated reflectance spectrum. Here, we investigate the potential for the detection of vegetation spectra during the last Quaternary climatic extrema, the Last Glacial Maximum (LGM) and the Holocene optimum, for which past climatic simulations have been made. By testing the VRE detectability during these extrema, when Earth's climate and biomes maps were different from today, we are able to test the vegetation detectability on a terrestrial planet different from our modern Earth. Data from the Biome3.5 model have been associated to visible Global Ozone Monitoring Experiment (GOME) spectra for each biome and cloud cover to derive Earth's integrated spectra for given Earth phases and observer positions. The VRE is then measured. Results show that the vegetation remains detectable during the last climatic extrema. Compared to the current Earth, the Holocene optimum, with a greener Sahara, slightly increases the mean VRE on one hand, while on the other hand, the large ice cap over the northern hemisphere during the LGM decreases vegetation detectability. We finally discuss the detectability of the VRE in the context of recently proposed space missions.

Type
Research Article
Copyright
Copyright © 2009 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, L. (2008). Space Sci. Rev. 135(1–4), 323333 (DOI:10.1007/s11214-007-9281-4), also in Strategies of Life Detection, Space Sciences Series ISSI 2008, eds Botta, O., Bada, J.L., Gomez-Elvira, J., Javaux, E., Selsis, F., Summons, R., Springer, Berlin (DOI:10.1007/978-0-387-77516-6_1).CrossRefGoogle Scholar
Arnold, L., Bréon, F.-M., Brewer, S., Guiot, J., Jacquemoud, S. & Schneider, J. (2003). The green vegetation as a biosignature on Earth and Earth-like planets: POLDER data and Earthshine observations. In Proc. Conf. SF2A-2003: Scientific Highlights 2003, eds Combes, F., Barret, D., Contini, T. & Pagani, L., Bordeaux, France, 16–20 June, 2003, pp. 133136. EDP-Sciences, Les Ulis.Google Scholar
Arnold, L., Gillet, S., Lardière, O., Riaud, P. & Schneider, J. (2002). Astron. Astrophys. 392(1), 231237.CrossRefGoogle Scholar
Bonfils, C., Noblet-Ducoudré, N., Braconnot, P. & Joussaume, S. (2001). J. Clim. 14(17), 37243737.2.0.CO;2>CrossRefGoogle Scholar
Braconnot, P. et al. (2007). Clim. Past 3, 261277.CrossRefGoogle Scholar
Bréon, F.-M. & Henriot, N. (2006). J. Geophys. Res. 111, C06005, doi:10.1029/2005JC003343.Google Scholar
Clark, R.N. (1999). Chapter 1: spectroscopy of rocks and minerals, and principles of spectroscopy. In Manual of Remote Sensing, Vol. 3, Remote Sensing for the Earth Sciences, ed. Rencz, A.N., pp. 358. John Wiley and Sons, New York.Google Scholar
Claussen, M., Kubatzki, C., Brovkin, V., Ganopolski, A., Hoelzmann, P. & Pachur, H.J. (1999). Geophys. Res. Letters 24(14), 20372040.CrossRefGoogle Scholar
Fairbanks, R.G. (1989). Nature 342, 637642.CrossRefGoogle Scholar
Guyon, O., Pluzhnik, E.A., Kuchner, M.J., Collins, B. & Ridgway, S.T. (2006). Astrophys. J. Supp. Series 167(1), 8199.CrossRefGoogle Scholar
Hamdani, S., Arnold, L., Foellmi, C., Berthier, J., Billeres, M., Briot, D., François, P., Riaud, P. & Schneider, J. (2006). Astron. Astrophys. 460, 617624.CrossRefGoogle Scholar
Haxeltine, A. & Prentice, I.C. (1996). Global Biogeochem. Cycles 10(4), 693709.CrossRefGoogle Scholar
Hewitt, C.D. & Mitchell, J.F.B. (1996). J. Clim. 9, 35053529.2.0.CO;2>CrossRefGoogle Scholar
Hewitt, C.D. & Mitchell, J.F.B. (1997). Clim. Dynam. 13, 821834.CrossRefGoogle Scholar
Labeyrie, A. (1999). Science 285(5435), 18641865.CrossRefGoogle Scholar
Labeyrie, A., Le Coroller, H., Dejonghe, J., Lardière, O., Aime, C., Dohlen, K., Mourard, D., Lyon, R. & Carpenter, G.K. (2008). Exper. Astron. in press (DOI:10.1007/s10686-008-9123-8).Google Scholar
Leemans, R. & Cramer, W. (1991). The IIASA Climate Database for Mean Monthly Values of Temperature, Precipitation & Cloudiness on a Terrestrial Grid. International Institute for Applied Systems Analysis, Laxenburg, Germany.Google Scholar
Léna, P., Lebrun, F. & Mignard, F. (1996). Méthodes physiques de l'observation, 2nd edn, pp. 55. CNRS Editions, EDP Sciences, Paris.Google Scholar
Manabe, S. & Strickler, R.F. (1964). J. Atmos. Sci. 21, 361385.2.0.CO;2>CrossRefGoogle Scholar
Prentice, I.C., Jolly, D. & BIOME 6000 Participants ( 2000). J. Biogeogr. 27, 507519.CrossRefGoogle Scholar
Qiu, J. et al. (2003). J. Geophys. Res. 108(D22), ACL 12-1.Google Scholar
Ritchie, J.C. & Haynes, C.V. (1987). Nature 330, 645647.CrossRefGoogle Scholar
Schneider, J. et al. (2008). Exper. Astron., in press (DOI:10.1007/s10686-008-9129-2).Google Scholar
Shaklan, S.B., Balasubramanian, K., Ceperly, D., Green, J.J., Hoppe, D.J., Lay, O.P., Lisman, P.D. & Mouroulis, P.Z. (2006). Terrestrial Planet Finder Coronagraph Instrument Design. In Direct Imaging of Exoplanets: Science & Techniques, Proc. of the IAU Colloquium #200, eds Aime, C. & Vakili, F., pp. 577580. Cambridge University Press, Cambridge.Google Scholar
Sitch, S. et al. (2003). Global Change Biol. 9, 161185.CrossRefGoogle Scholar
Stapelfeldt, K., Beichmann, C. & Kuchner, M. (2005). New Astron. Rev. 49, 396399.CrossRefGoogle Scholar
Woolf, N.J., Smith, P.S., Traub, W.A. & Jucks, K.W. (2002). Astrophys. J. 574, 430433.CrossRefGoogle Scholar