Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T01:51:44.638Z Has data issue: false hasContentIssue false

Database on mineral mediated carbon reduction: implications for future research

Published online by Cambridge University Press:  30 June 2022

Medha Prakash
Affiliation:
NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
Jessica M. Weber*
Affiliation:
NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
Laura E. Rodriguez
Affiliation:
NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
Rachel Y. Sheppard
Affiliation:
NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
Laura M. Barge
Affiliation:
NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
*
Author for correspondence: Jessica M. Weber, E-mail: [email protected]

Abstract

Carbon reduction is an important process for Earth-like origins of life events and of great interest to the astrobiology community. In this paper, we have collected experimental results, field work and modelling data on CO and CO2 reduction in order to summarize the research that has been carried out particularly in relation to the early Earth and Mars. By having a database of this work, researchers will be able to clearly survey the parameters tested and find knowledge gaps wherein more experimentation would be most beneficial. We focused on reviewing the modelling parameters, field work and laboratory conditions relevant to Mars and the early Earth. We highlight important areas addressed as well as suggest future work needed, including identifying relevant parameters to test in both laboratory and modelling work. We also discuss the utility of organizing research results in such a database in astrobiology.

Type
Research Article
Copyright
Copyright © California Institute of Technology, 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amador, ES, Bandfield, JL and Thomas, NH (2018) A search for minerals associated with serpentinization across Mars using CRISM spectral data. Icarus 311, 113134.CrossRefGoogle Scholar
Armstrong, K, Frost, DJ, McCammon, CA, Rubie, DC and Boffa Ballaran, T (2019) Deep magma ocean formation set the oxidation state of Earth's mantle. Science 365, 903906.CrossRefGoogle ScholarPubMed
Barbier, S, Huang, F, Andreani, M, Tao, R, Hao, J, Eleish, A, Prabhu, A, Minhas, O, Fontaine, K, Fox, P and Daniel, I (2020) A review of H2, CH4, and hydrocarbon formation in experimental serpentinization using network analysis. Frontiers of Earth Science 8, 209.CrossRefGoogle Scholar
Barge, LM, Cardoso, SSS, Cartwright, JHE, Doloboff, IJ, Flores, E, Macías-Sánchez, E, Sainz-Díaz, CI and Sobrón, P (2016) Self-assembling iron oxyhydroxide/oxide tubular structures: laboratory-grown and field examples from Rio Tinto. Proceedings of the Royal Society A 472, 20160466.CrossRefGoogle ScholarPubMed
Barge, LM, Flores, E, Baum, MM, VanderVelde, DG and Russell, MJ (2019) Redox and pH gradients drive amino acid synthesis in iron oxyhydroxide mineral systems. Proceedings of the National Academy of Sciences 116, 48284833.CrossRefGoogle ScholarPubMed
Barge, LM, Flores, E, VanderVelde, DG, Weber, JM, Baum, MM and Castonguay, A (2020) Effects of geochemical and environmental parameters on abiotic organic chemistry driven by iron hydroxide minerals. Journal of Geophysical Research: Planets 125, e2020JE006423.Google Scholar
Baross, JA and Hoffman, SE (1985) Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Origins of Life and Evolution of the Biosphere: The Journal of the International Society for the Study of the Origin of Life 15, 327345.CrossRefGoogle Scholar
Batalha, N, Domagal-Goldman, SD, Ramirez, R and Kasting, JF (2015) Testing the early Mars H2–CO2 greenhouse hypothesis with a 1-D photochemical model. Icarus 258, 337349.CrossRefGoogle Scholar
Becker, S, Thoma, I, Deutsch, A, Gehrke, T, Mayer, P, Zipse, H and Carell, T (2016) A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway. Science 352, 833836.CrossRefGoogle ScholarPubMed
Bibring, JP, Langevin, Y, Mustard, JF, Poulet, F, Arvidson, R, Gendrin, A, Gondet, B, Mangold, N, Pinet, P and Forget, F and OMEGA team (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science 312, 400404.CrossRefGoogle ScholarPubMed
Bonaccorsi, R (2011) Preservation potential and habitability of clay minerals-and iron-rich environments: novel analogs for the 2011 Mars science laboratory mission. STROMATOLITES: Interaction of Microbes with Sediments. Dordrecht: Springer, pp. 705722.CrossRefGoogle Scholar
Boston, PJ, Ivanov, MV and McKay, CP (1992) On the possibility of chemosynthetic ecosystems in the subsurface habitats of Mars. Icarus 95, 300308.CrossRefGoogle ScholarPubMed
Braun, D and Libchaber, A (2004) Thermal force approach to molecular evolution. Physical Biology 1, P1P8.CrossRefGoogle ScholarPubMed
Brown, AJ, Viviano-Beck, CE, Bishop, JL, Cabrol, NA, Andersen, D, Sobron, P, Moersch, J, Templeton, AS and Russell, MJ (2016) A serpentinization origin for Jezero crater carbonates. Abstract submitted to 47th Lunar and Planetary Science Conference, Houston, TX.Google Scholar
Butlerov, A (1861) Bildung einer zuckerartigen substanz durch synthese. Liebigs Annalen der Chemie 120, 295298.CrossRefGoogle Scholar
Callahan, MP, Burton, AS, Elsila, JE, Baker, EM, Smith, KE, Glavin, DP and Dworkin, JP (2013) A search for amino acids and nucleobases in the Martian meteorite Roberts Massif 04262 using liquid chromatography-mass spectrometry. Meteoritics and Planetary Science 48, 786795.CrossRefGoogle Scholar
Calvert, JG and Steacie, EWR (1951) Vapor phase photolysis of formaldehyde at wavelength 3130A. Journal of Chemical Physics 19, 176-182.CrossRefGoogle Scholar
Carr, MH (2012) The fluvial history of Mars. Philosophical Transactions of the Royal Society A 370, 21932215.CrossRefGoogle ScholarPubMed
Castillo-Rogez, JC, Neveu, M, Scully, JEC, House, CH, Quick, LC, Bouquet, A, Miller, K, Bland, M, De Sanctis, MC, Ermakov, A, Hendrix, AR, Prettyman, TH, Raymond, CA, Russell, CT, Sherwood, BE and Young, E (2020) Ceres: astrobiological target and possible ocean world. Astrobiology 20, 269291.CrossRefGoogle ScholarPubMed
Civiš, S, Szabla, R, Szyja, BM, Smykowski, D, Ivanek, O, Knížek, A, Kubelík, P, Šponer, J, Ferus, M and Šponer, JE (2016) TiO2-catalyzed synthesis of sugars from formaldehyde in extraterrestrial impacts on the early Earth. Scientific Reports 6, 23199.CrossRefGoogle ScholarPubMed
Civiš, S, Knížek, A, Ivanek, O, Kubelík, P, Zukalová, M, Kavan, L and Ferus, M (2017) The origin of methane and biomolecules from a CO2 cycle on terrestrial planets. Nature Astronomy 1, 721726.CrossRefGoogle Scholar
Civiš, S, Knížek, A, Rimmer, PB, Ferus, M, Kublelík, P, Zukalová, M, Kavan, L and Chatzitheodoridis, E (2019) Formation of methane and (Per)Chlorates on Mars. ACS Earth and Space Chemistry 3, 221232.CrossRefGoogle Scholar
Cleaves, HJ (2008) The prebiotic chemistry of formaldehyde. Precambrian Research 164, 111118.CrossRefGoogle Scholar
Cleaves, HJ (2011) Formose reaction. In Gargaud, M (ed.), Encyclopedia of Astrobiology. Berlin, Heidelberg: Springer, pp. 600605. doi: 10.1007/978-3-642-11274-4_587.CrossRefGoogle Scholar
Cleaves, HJ, Chalmers, JH, Lazcano, A, Miller, SL and Bada, JL (2008) A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Origins of Life and Evolution of the Biosphere 38, 105115.CrossRefGoogle ScholarPubMed
DiSanti, MA, Mumma, MJ, Russo, ND, Magee-Sauer, K, Novak, R and Rettig, TW (1999) Identification of two sources of carbon monoxide in Comet Hale-Bopp. Nature 399, 662665.CrossRefGoogle ScholarPubMed
Drabon, N, Byerly, BL, Byerly, GR, Wooden, JL, Keller, CB and Lowe, DR (2021) Heterogeneous Hadean crust with ambient mantle affinity recorded in detrital zircons of the Green Sandstone Bed, South Africa. Proceedings of the National Academy of Sciences 118, e2004370118.CrossRefGoogle ScholarPubMed
Ehlmann, BL, Mustard, JF, Swayze, GA, Clark, RN, Bishop, JL, Poulet, F, Des Marais, DJ, Roach, LH, Milliken, RE, Wray, JJ, Barnouin-Jha, O and Murchie, SL (2009) Identification of hydrated silicate minerals on Mars using CRISM: geologic context near Nili Fossae and implications of aqueous alteration. JGR Planets 114, E00D08.Google Scholar
Ehlmann, BL, Mustard, JF and Murchie, SL (2010) Geologic settings of serpentine deposits on Mars. Geophysical Research Letters 37, L06201.CrossRefGoogle Scholar
Eigenbrode, JL, Summons, RE, Steele, A, Freissinet, C, Millan, M, Navarro-González, R, Sutter, B, McAdam, AC, Franz, HB, Glavin, DP, Archer, PD, Mahaffy, PR, Conrad, PG, Hurowitz, JA, Grotzinger, JP, Gupta, S, Ming, DW, Sumner, DY, Szopa, C, Malespin, C, Buch, A and Coll, P (2018) Organic matter preserved in 3-billion-year-old mudstones at Gale Crater, Mars. Science 360, 10961101.CrossRefGoogle ScholarPubMed
Etiope, G, Schoell, M and Hosgörmez, H (2011) Abiotic methane flux from the Chimaera Seep and Tekirova ophiolites (Turkey): understanding gas exhalation from low temperature serpentinization and its implications for Mars. Earth and Planetary Science Letters 310, 96104.CrossRefGoogle Scholar
Etiope, G, Ehlmann, BL and Schoell, M (2013) Low temperature production and exhalation of methane from serpentinized rocks on Earth: a potential analog for methane production on Mars. Icarus 224, 276285.CrossRefGoogle Scholar
Farley, KA, Williford, KH, Stack, KM, Bhartia, R, Chen, A, de la Torre, M, Hand, K, Goreva, Y, Herd, CDK, Hueso, R, Liu, Y, Maki, JN, Martinez, G, Moeller, RC, Nelessen, A, Newman, CE, Nunes, D, Ponce, A, Spanovich, N, Willis, PA, Beegle, LW, Bell, JF, Brown, AJ, Hamran, SE, Hurowitz, JA, Maurice, S, Paige, DA, Rodriguez-Manfredi, JA, Schulte, M and Wiens, RC (2020) Mars 2020 Mission overview. Space Science Reviews 216, 142.CrossRefGoogle Scholar
Farmer, JD and Des Marais, DJ (1999) Exploring for a record of ancient Martian life. JGR Planets 104, 2697726995.CrossRefGoogle ScholarPubMed
Formisano, V, Atreya, SK, Encrenaz, T, Ignatiev, N and Giuranna, M (2004) Detection of methane in the atmosphere of Mars. Science 306, 17581761.CrossRefGoogle ScholarPubMed
Foustoukos, DI and Seyfried, WE (2004) Hydrocarbons in hydrothermal vent fluids: the role of chromium-bearing catalysts. Science 304, 10021005.CrossRefGoogle ScholarPubMed
Franz, HB, Trainer, MG, Malespin, CA, Mahaffy, PR, Atreya, SK, Becker, RH, Benna, M, Conrad, PG, Eigenbrode, JL, Freissinet, C, Manning, HLK, Prats, BD, Raaen, E and Wong, MH (2017) Initial SAM calibration gas experiments on Mars: quadrupole mass spectrometer results and implications. Planetary and Space Science 138, 4454.CrossRefGoogle Scholar
Franz, HB, Mahaffy, PR, Flesch, GJ, Raaen, E, Freissinet, C, Atreya, SK, House, CH, McAdams, AC, Knudson, CA, Archer, PD, Stern, JC, Steele, A, Stutter, B, Eigenbrode, JL, Glavin, DP, Lewis, JMT, Malespin, CA, Millan, M, Ming, DW, Navarro-González, R and Summons, RE (2020) Indigenous and exogenous organics and surface–atmosphere cycling inferred from carbon and oxygen isotopes at Gale crater. Nature Astronomy 4, 526532.CrossRefGoogle Scholar
Giuranna, M, Viscardy, S, Daerden, F, Neary, L, Etiope, G, Oehler, D, Formisano, V, Aronica, A, Wolkenberg, P, Aoki, S, Cardesín-Moinelo, A, Marín-Yaseli de la Parra, J, Merritt, D and Amoroso, M (2019) Independent confirmation of a methane spike on Mars and a source region east of Gale Crater. Nature Geoscience 12, 326332.CrossRefGoogle Scholar
Glavin, DP, Freissinet, C, Miller, KE, Eigenbrode, JL, Brunner, AE, Buch, A, Sutter, B, Archer, PD, Atreya, SK, Brinckerhoff, WB, Cabane, M, Coll, P, Conrad, PG, Coscia, D, Dworkin, JP, Reanz, HB, Grotzinger, JP, Leshin, LA, Martin, MG, McKay, C, Ming, DW, Navarro-González, R, Pavlov, A, Steele, A, Summons, RE, Szopa, C, Teinturier, S and Mahaffy, PR (2013) Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. Science 118, 19551973.Google Scholar
Glein, CR, Baross, JA and Waite, JH (2015) The pH of Enceladus’ ocean. Geochimica et Cosmochimica Acta 162, 202219.CrossRefGoogle Scholar
Goldford, JE, Hartman, H, Smith, TF and Segrè, D (2017) Remnants of an ancient metabolism without phosphate. Cell 168, 11261134.CrossRefGoogle ScholarPubMed
Griffin, WL, Belousova, EA, O'Neill, C, O'Reilly, SY, Malkovets, V, Pearson, NJ, Spetsuis, S and Wilde, SA (2014) The world turns over: Hadean-Archean crust-mantle evolution. Lithos 189, 215.CrossRefGoogle Scholar
Guan, G, Kida, T, Ma, T, Kimura, K, Abe, E and Yoshida, A (2003) Reduction of aqueous CO2 at ambient temperature using zero-valent iron-based composites. Green Chemistry 5, 630634.CrossRefGoogle Scholar
Halevy, I and Bachan, A (2017) The geologic history of seawater pH. Science 355, 10691071.CrossRefGoogle ScholarPubMed
Hand, E (2009) Methane-producing mineral discovered on Mars. Nature. https://doi.org/10.1038/news.2009.197.Google Scholar
Hawkesworth, C, Cawood, PA and Dhuime, B (2020) The evolution of the continental crust and the onset of plate tectonics. Frontiers in Earth Science (Lausanne) 8, 326.CrossRefGoogle ScholarPubMed
He, C, Tian, G, Liu, Z and Feng, S (2010) A mild hydrothermal route to fix carbon dioxide to simple carboxylic acids. Organic Letters 12, 649651.CrossRefGoogle ScholarPubMed
Heinen, W and Lauwers, A (1997) The iron-sulfur world and the origins of life: abiotic thiol synthesis from metallic iron, H2S and CO2; a comparison of the thiol generating FeS/HCl(H2S)/CO2-system and its Fe°/H2S/CO2-counterpart. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 100, 1125.Google Scholar
Heinrich, MN, Khare, BN and McKay, CP (2007) Prebiotic organic synthesis in early Earth and Mars atmospheres: laboratory experiments with quantitative determination of products formed in a cold plasma flow reactor. Icarus 191, 765778.CrossRefGoogle Scholar
Holland, HD and Turekian, KK (2006) The ocean and marine geochemistry. In Elderfield, H (ed.), Treatise on Geochemistry, vol. 6. Amsterdam/Heidelberg: Elsevier, pp. 365369.Google Scholar
Horita, J and Berndt, ME (1999) Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285, 10551057.CrossRefGoogle ScholarPubMed
Huang, F, Barbier, S, Tao, R, Hao, J, de Real, PG, Peuble, P, Merdith, A, Leichnig, V, Perrillat, JP, Fontaine, K, Fox, P, Andreani, M and Daniel, I (2020) Dataset for H2, CH4 and organic compounds formation during experimental serpentinization. Geoscience Data Journal 8, 90100.CrossRefGoogle Scholar
Hudson, R, de Graaf, R, Rodin, MS, Ohno, A, Lane, N, McGlynn, SE, Yamada, YMA, Nakamura, R, Barge, LM, Braun, D and Sojo, V (2020) CO2 reduction driven by a pH gradient. Proceedings of the National Academy of Sciences 117, 2287322879.CrossRefGoogle ScholarPubMed
Ji, F, Zhou, H and Yang, Q (2008) The abiotic formation of hydrocarbons from dissolved CO2 under hydrothermal conditions with cobalt-bearing magnetite. Origins of Life and Evolution of the Biosphere 38, 117125.CrossRefGoogle ScholarPubMed
Jiang, F, Liu, B, Geng, S, Xu, Y and Liu, X (2018) Hydrogenation of CO2 into hydrocarbons: enhanced catalytic activity over Fe-based Fischer–Tropsch catalysts. Catalysis Science & Technology 8, 40974107.CrossRefGoogle Scholar
Kasting, JF (1990) Bolide impacts and the oxidation state of carbon in the Earth's early atmosphere. Origins of Life and Evolution of the Biosphere: The Journal of the International Society for the Study of the Origin of Life 20, 199231.CrossRefGoogle Scholar
Kasting, JF (1993) Earth's early atmosphere. Science (New York, N.Y.) 259, 920926.CrossRefGoogle ScholarPubMed
Kasting, JF and Catling, D (2003) Evolution of a habitable planet. Annual Review of Astronomy and Astrophysics 41, 429463.CrossRefGoogle Scholar
Kasting, JF, Zahnle, KJ and Walker, JCG (1983) Photochemistry of methane in the Earth's early atmosphere. Precambrian Research 20, 121148.CrossRefGoogle Scholar
Kelley, DS (1996) Methane-rich fluids in the oceanic crust. Journal of Geophysical Research: Solid Earth 101, 29432962.CrossRefGoogle Scholar
Kelley, DS, Karson, JA, Blackman, DK, Früh-Green, GL, Butterfield, DA, Lilley, MD, Olson, EJ, Schrenk, MO, Roe, KK, Lebon, GT, Rivizzigno, P and The AT3-60 Shipboard Party (2001) An off-axis hydrothermal vent field near the mid-Atlantic ridge at 30 N. Nature 412, 145149.CrossRefGoogle Scholar
Kelley, DS, Baross, JA and Delaney, JR (2002) Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annual Review of Earth and Planetary Sciences 30, 385491.CrossRefGoogle Scholar
Kelley, DS, Karson, J, Früh-Green, G, Yoerger, DR, Shank, TM, Butterfeild, DA, Hayes, JM, Schrenk, MO, Olson, EJ, Proskurowski, G, Jakauba, M, Bradley, A, Larson, B, Ludwig, K, Glickson, D, Buckman, K, Bradley, AS, Brazelton, WJ, Roe, K, Elend, MJ, Delacour, A, Bernasconi, SM, Lilley, MD, Baross, JA, Summons, RE and Sylva, SP (2005) A serpentinite-hosted ecosystem: the lost city hydrothermal field. Science 307, 14281434.CrossRefGoogle ScholarPubMed
Kemp, AIS, Wilde, SA, Hawkesworth, CJ, Coath, CD, Nemchin, A, Pidgeon, RT, Vervoort, JD and DuFrane, SA (2010) Hadean crustal evolution revisited: new constraints from Pb-Hf isotope systematics of the Jack Hills zircons. Earth and Planetary Science Letters 296, 4556.CrossRefGoogle Scholar
Kerr, RA (2004) Heavy breathing on Mars? Science 306, 29.CrossRefGoogle ScholarPubMed
Kitadai, N, Nakamura, R, Yamamoto, M, Yoshita, N and Oono, Y (2019) Metals likely promoted protometabolism in early ocean alkaline hydrothermal systems. Science Advances 5, eaav7848.CrossRefGoogle ScholarPubMed
Klein, F and McCollom, TM (2013) From serpentinization to carbonation: new insights from a CO2 injection experiment. Earth and Planetary Science Letters 379, 137145.CrossRefGoogle Scholar
Knížek, A, Kubelík, P, Bouša, M, Ferus, M and Civiš, S (2020) Acidic hydrogen enhanced photocatalytic reduction of CO2 on planetary surfaces. ACS Earth and Space Chemistry 4, 10011009.CrossRefGoogle Scholar
Knoll, AH and Grotzinger, J (2006) Water on Mars and the prospect of Martian life. Elements 2, 169173.CrossRefGoogle Scholar
Kopetzki, D and Antonietti, M (2011) Hydrothermal formose reaction. New Journal of Chemistry 35, 17871794.CrossRefGoogle Scholar
Korablev, O, Vandaele, AC, Montmessin, F, Fedorova, AA, Trokhimovskiy, A, Forget, F, Lefèvre, F, Daerden, F, Thomas, IR, Trompet, L, Erwin, JT, Aoki, S, Robert, S, Neary, L, Viscardy, S, Grigoriev, AV, Ignatiev, NI, Shakun, A, Patrakeev, A, Belyaev, DA, Bertaux, JL, Olsen, KS, Baggio, L, Alday, J, Ivanov, YS, Ristic, B, Mason, J, Willame, Y, Depiesse, C, Hetey, L, Berkenbosch, S, Clairquin, R, Queirolo, C, Beeckman, B, Neefs, E, Patel, MR, Bellucci, G, López-Moreno, JJ, Wilson, CF, Etiope, G, Zelenyi, L, Svedham, H, Vago, JL, The ACS Science Team and The NOMAD Science Team (2019) No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature 568, 517520.CrossRefGoogle ScholarPubMed
Kress, ME and McKay, CP (2004) Formation of methane in comet impacts: implications for Earth, Mars, and Titan. Icarus 168, 475483.CrossRefGoogle Scholar
Krissansen-Totton, J, Arney, GN and Catling, DC (2018) Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model. Proceedings of the National Academy of Sciences of the USA 115, 41054110.CrossRefGoogle ScholarPubMed
Lang, SQ, Butterfield, DA, Schulte, M, Kelley, DS and Lilley, MD (2010) Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochimica et Cosmochimica Acta 74, 941952.CrossRefGoogle Scholar
Langlais, B, Purucker, ME and Mandea, M (2004) Crustal magnetic field of Mars: crustal magnetic field of Mars. Journal of Geophysical Research: Planets 109, E2.CrossRefGoogle Scholar
Li, Y, Kitadai, N and Nakamura, R (2018) Chemical diversity of metal sulfide minerals and its implications for the origin of life. Life 8, 46.CrossRefGoogle ScholarPubMed
Li, Y, Li, Y, Liu, Y, Wu, Y, Wu, J, Wang, B, Ye, H, Jia, H, Wang, X, Li, L, Zhu, M, Ding, H, Lai, Y, Wang, C, Dick, J and Lu, A (2020) Photoreduction of inorganic carbon(+IV) by elemental sulfur: implications for prebiotic synthesis in terrestrial hot springs. Science Advances 6, eabc3687.CrossRefGoogle ScholarPubMed
Liggins, P, Shorttle, O and Rimmer, PB (2020) Can volcanism build hydrogen-rich early atmospheres? Earth and Planetary Science Letters 550, 116546.CrossRefGoogle Scholar
Lindgren, P, Parnell, J, Holm, NG and Broman, C (2011) A demonstration of an affinity between pyrite and organic matter in a hydrothermal setting. Geochemical Transactions 12, 3.CrossRefGoogle Scholar
Liu, J, Michalski, JR, Tan, W, He, H, Ye, B and Xiao, L (2021) Anoxic chemical weathering on a reducing greenhouse on Mars. Nature Astronomy 5, 503509.CrossRefGoogle Scholar
Lyons, JR, Manning, C and Nimmo, F (2005) Formation of methane on Mars by fluid-rock interaction in the crust. Geophysical Research Letters 32, L13201.CrossRefGoogle Scholar
MacLeod, G, McKeown, C, Hall, AJ and Russell, MJ (1994) Hydrothermal and oceanic pH conditions of possible relevance to the origin of life. Origins of Life and Evolution of the Biosphere 24, 1941.CrossRefGoogle ScholarPubMed
Mahaffy, PR, Webster, CR, Cabane, M, Conrad, PG, Coll, P, Atreya, SK, Arvey, R, Barciniak, M, Benna, M, Bleacher, L, Brinckerhoff, WB, Eigenbrode, JL, Carignan, S, Cascia, M, Chalmers, RA, Dworkin, JP, Errigo, T, Everson, P, Franz, H, Farley, R, Feng, S, Frazier, G, Freissinet, C, Glavin, D, Harpold, D, Hawk, D, Holmes, V, Johnson, CS, Jones, A, Jordan, P, Kellogg, J, Lewis, J, Lyness, E, Malespin, CA, Martin, D, Maurer, J, McAdam, AC, McLennan, D, Nolan, TJ, Noriega, M, Pavlov, AA, Prats, B, Raaen, E, Sheinman, O, Sheppard, D, Smith, J, Stern, JC, Tan, F, Trainer, M, Ming, DW, Morris, RV, Jones, J, Gundersen, C, Steele, A, Wray, J, Botta, O, Leshin, LA, Owen, T, Battel, S, Jakosky, BM, Manning, H, Squyres, S, Navarro-González, R, McKay, CP, Raulin, F, Sternberg, R, Buch, A, Sorensen, P, Kline-Schoder, R, Coscia, D, Szopa, C, Teinturier, S, Baffes, C, Feldman, J, Flesch, G, Forouhar, S, Garcia, R, Keymeulen, D, Woodward, S, Block, BP, Arnett, K, Miller, R, Edmonson, C, Gorevan, S and Mumm, E (2012) The Sample Analysis at Mars investigation and instrument suite. Space Science Reviews 170, 401478.CrossRefGoogle Scholar
Martin, W and Russell, MJ (2007) On the origin of biochemistry at an alkaline hydrothermal vent. Philosophical Transactions of the Royal Society B: Biological Sciences 367, 18871926.CrossRefGoogle Scholar
Martin, W, Baross, J, Kelley, D and Russell, MJ (2008) Hydrothermal vents and the origin of life. Nature Reviews Microbiology 6, 805814.CrossRefGoogle ScholarPubMed
Max, MD and Clifford, SM (2000) The state, potential distribution, and biological implications of methane in the Martian crust. Journal of Geophysical Research 105, 4165.CrossRefGoogle Scholar
McCollom, TM (2013) Miller–Urey and beyond: what have we learned about prebiotic organic synthesis reactions in the past 60 years? Annual Review of Earth and Planetary Sciences 41, 207229.CrossRefGoogle Scholar
McCollom, TM (2016) Abiotic methane formation during experimental serpentinization of olivine. PNAS 113, 1396513970.CrossRefGoogle ScholarPubMed
McCollom, TM and Seewald, JS (2001) A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochimica et Cosmochimica Acta 65, 37693778.CrossRefGoogle Scholar
McCollom, TM and Seewald, JS (2003) Experimental constraints on the hydrothermal reactivity of organic acids and acid ions: i. formic acid and formate. Geochimica et Cosmochimica Acta 67, 3625–2644.CrossRefGoogle Scholar
McGlynn, SE, Mulder, DW, Shepard, DM, Broderick, JB and Peters, JW (2009) Hydrogenase cluster biosynthesis: organometallic chemistry nature's way. Dalton Transactions, 42744285.CrossRefGoogle ScholarPubMed
Michalski, JR, Onstott, TC, Mojzsis, SJ, Mustard, J, Chan, QHS, Niles, PB and Stewart Johnson, S (2018) The Martian subsurface as a potential window into the origin of life. Nature Geoscience 11, 2126.CrossRefGoogle Scholar
Millan, M, Williams, AJ, McAdam, A, Eigenbrode, JL, Freissinet, C, Glavin, DP, Szopa, C, Buch, A, Williams, RH, Navarro-Gonzalez, R, Lewis, JMT, Fox, V, Bryk, AB, Bennet, K, Steele, A, Teinturier, S, Malespin, C, Johnson, SS and Mahaffy, PR (2021) Organic molecules revealed in Glen Torridon by the SAM instrument. Abstract submitted to 52nd Lunar and Planetary Science Conference, Houston, TX, p. 2039.Google Scholar
Miller, SL (1953) A production of amino acids under possible primitive Earth conditions. Science 117, 528529.CrossRefGoogle ScholarPubMed
Miller, KE, Eigenbrode, JL, Freissinet, C, Glavin, DP, Kotrc, B, Francois, P and Summons, RE (2016) Potential precursors compounds for chlorohydrocarbons detected in Gale Crater, Mars, by the SAM instrument suite on the Curiosity Rover. JGR Planets 121, 296308.CrossRefGoogle Scholar
Miller, HM, Mayhew, LE, Ellison, ET, Kelemen, P, Kubo, M and Templeton, AS (2017) Low temperature hydrogen production during experimental hydration of partially serpentinized dunite. Geochimica et Cosmochimica Acta 209, 153.CrossRefGoogle Scholar
Miyakawa, S, Yamanashi, H, Kobayashi, K, Cleaves, HJ and Miller, SL (2002) Prebiotic synthesis from CO atmospheres: implications for the origins of life. Proceedings of the National Academy of Sciences of the USA 99, 1462814631.CrossRefGoogle ScholarPubMed
Mojzsis, SJ, Harrison, TM and Pidgeon, RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago. Nature 409, 178181.CrossRefGoogle Scholar
Morse, JW and Mackenzie, FT (1998) Hadean ocean carbonate geochemistry. Aquatic Geochemistry 4, 301319.CrossRefGoogle Scholar
Mulkidjanian, AY (2009) On the origin of life in the Zinc world: I. Photosynthesizing, porous edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth. Biology Direct 4, 26.CrossRefGoogle ScholarPubMed
Neto-Lima, J, Fernández-Sampedro, M and Prieto-Ballesteros, O (2017) High pressure serpentinization catalyzed by Awaruite in planetary bodies. Journal of Physics: Conference Series 950, 042041.Google Scholar
Nitschke, W, McGlynn, SE, Milner-White, EJ and Russell, MJ (2013) On the antiquity of metalloenzymes and their substrates in bioenergetics. Biochimica et Biophysica Acta, Bioenergetics 1827, 871881.CrossRefGoogle ScholarPubMed
Nuevo, M, Augar, G, Blanot, D and d'Hendecourt, L (2008) A detailed study of the amino acids produced from the vacuum UV irradiation of interstellar ice analogs. Origins of Life and Evolution of the Biosphere: The Journal of the International Society for the Study of the Origin of Life 38, 3756.CrossRefGoogle ScholarPubMed
Oze, C and Sharma, M (2005) Have olivine, will gas: serpentinization and the abiogenic production of methane on Mars. Geophysical Research Letters 32, L10203.CrossRefGoogle Scholar
Pirronello, V, Brown, WL, Lazerotti, LJ, Marcantonio, KJ and Simmons, EH (1982) Formaldehyde formation in a H2O/CO2 ice mixture under irradiation by fast ions. Astrophysical Journal 262, 636640.CrossRefGoogle Scholar
Porosoff, MD, Yan, B and Chen, JG (2016) Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy & Environmental Science 9, 6273.CrossRefGoogle Scholar
Preiner, M, Xavier, JC, Sousa, FL, Zimorski, V, Neubeck, A, Lang, SQ, Greenwell, HC, Kleinermanns, K, Tüysüz, H, Micollom, TM, Holm, NG and Martin, MF (2018) Serpentinization: connecting geochemistry, ancient metabolism, and industrial hydrogenation. Life (Chicago, Ill) 8, 41.Google ScholarPubMed
Preiner, M, Igarashi, K, Muchowska, KB, Yu, M, Varma, SJ, Kleinermanns, K, Nobu, MK, Kamagata, Y, Tüysüz, H, Moran, J and Martin, WF (2020) A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism. Nature Ecology & Evolution 4, 345542.CrossRefGoogle ScholarPubMed
Reimink, JR, Davies, JHFL, Chacko, T, Stern, RA, Heaman, LM, Sarkar, C, Schaltegger, U, Creaser, RA and Pearson, DG (2016) No evidence for Hadean continental crust within Earth's oldest evolved rock unit. Nature Geoscience 9, 777780.CrossRefGoogle Scholar
Riedel, T, Schaub, G, Jun, K-W and Lee, K-W (2001) Kinetics of CO2 hydrogenation on a K-promoted Fe catalyst. Industrial & Engineering Chemistry Research 40, 13551363.CrossRefGoogle Scholar
Rodriguez, LE, House, CH, Smith, KE, Roberts, MR and Callahan, MP (2019) Nitrogen heterocycles form peptide nucleic acid precursors in complex prebiotic mixtures. Scientific Reports 9, 9281.CrossRefGoogle ScholarPubMed
Roldan, A, Hollingsworth, N, Roffey, A, Islam, H-U, Goodall, JBM, Catlow, CRA, Darr, JA, Bras, W, Sankar, G, Holt, KB, Hogarth, G and de Leeuw, NH (2015) Bio-inspired CO2 conversion by iron sulfide catalysts under sustainable conditions. Chemical Communication 51, 75017504.CrossRefGoogle ScholarPubMed
Rosas, JC and Korenaga, J (2021) Archaean seafloors shallowed with age due to radiogenic heating in the mantle. Nature Geoscience 14, 5156.CrossRefGoogle Scholar
Ruiz, P, Fernández, C, Ifandi, E, Eloy, P, Meza-Trujilo, I, Devred, F, Gaigneaux, EM and Tsikouras, B (2021) Abiotic transformation of H2 and CO2 into methane on a natural chromitite rock. ACS Earth and Space Chemistry 5, 16951708.CrossRefGoogle Scholar
Russell, MJ and Hall, AJ (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. Journal of Geological Society 154, 377402.CrossRefGoogle Scholar
Russell, MJ and Martin, W (2004) The rocky roots of the acetyl-CoA pathway. Trends in Biochemical Sciences 29, 358363.CrossRefGoogle ScholarPubMed
Russell, MJ, Daniel, RM, Hall, AJ and Sherringham, JA (1994) A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. Journal of Molecular Evolution 39, 231243.CrossRefGoogle Scholar
Russell, MJ, Hall, AJ and Martin, W (2010) Serpentinization as a source for energy at the origin of life. Geobiology 8, 355371.CrossRefGoogle ScholarPubMed
Russell, MJ, Barge, LM, Bhartia, R, Bocanegra, D, Bracher, PJ, Branscomb, E, Kidd, R, McGlynn, S, Meier, DH, Nitschke, W, Shibuya, T, Vance, S, White, L and Kanik, I (2014) The drive to life on wet and icy worlds. Astrobiology 4, 308343.CrossRefGoogle Scholar
Santos-Carballal, D, Roldan, A, Dzade, NY and de Leeuw, NH (2017) Reactivity of CO2 on the surfaces of magnetite (Fe3O4), greigite (Fe3S4), and mackinawite (FeS). Philosophical Transactions of the Royal Society A 376, 20170065.CrossRefGoogle Scholar
Santosh, M, Arai, T and Maruyama, S (2017) Hadean Earth and primordial continents: the cradle of prebiotic life. Geoscience Frontiers 8, 309327.CrossRefGoogle Scholar
Schouten, KJP, Gallent, EP and Koper, MTM (2013) Structure sensitivity of the electrochemical reduction of carbon monoxide on copper single crystals. ACS Catalysis 3, 12921295.CrossRefGoogle Scholar
Schrenk, MO, Brazelton, WJ and Lang, SQ (2013) Serpentinization, carbon, and deep life. Reviews in Mineralogy and Geochemistry 75, 575606.CrossRefGoogle Scholar
Schulte, M, Blake, D, Hoehler, T and McCollom, T (2006) Serpentinization and its implications for life on the early Earth and Mars. Astrobiology 6, 364376.CrossRefGoogle ScholarPubMed
Sekine, Y, Sugita, S, Kadono, T and Matsui, T (2003) Methane production by large iron meteorite impacts on early Earth. Journal of Geophysical Research 108, E7.CrossRefGoogle Scholar
Seyfried, WE, Foustoukos, DI and Fu, Q (2007) Redox evolution and mass transfer during serpentinization: an experimental and theoretical study at 200 °C, 500 bar with implications ultramafic-hosted hydrothermal systems at mid-ocean. Geochimica et Cosmochimica Acta 71, 38723886.CrossRefGoogle Scholar
Sherwood Lollar, B, Lacrampe-Couloume, G, Slater, GF, Ward, J, Moser, DP, Gihring, TM, Lin, L-H and Onstott, TC (2006) Unravelling abiogenic and biogenic sources of methane in the Earth's deep subsurface. Chemical Geology 226, 328339.CrossRefGoogle Scholar
Shibuya, T, Yoshizaki, M, Sato, M, Shimizu, K, Nakamura, K, Omori, S, Suzuki, K, Takai, K, Tsunakawa, H and Maruyama, S (2015) Hydrogen-rich hydrothermal environments in the Hadean ocean inferred from serpentinization of komatiites at 300 °C and 500 bar. Progress in Earth and Planetary Science 2, 46.CrossRefGoogle Scholar
Sholes, SF, Smith, ML, Claire, MW, Zahnle, KJ and Catling, DC (2017) Anoxic atmospheres on Mars driven by volcanism: implications for past environments and life. Icarus 290, 4662.CrossRefGoogle Scholar
Sleep, NH, Zahnle, K and Neuhoff, PS (2001) Initiation of clement surface conditions on the earliest Earth. Proceedings of the National Academy of Sciences of the USA 98, 36663672.CrossRefGoogle ScholarPubMed
Sleep, NH, Meibom, A, Fridriksson, T, Coleman, RG and Bird, DK (2004) H2-rich fluids from serpentinization: geochemical and biotic implications. Proceedings of the National Academy of Sciences of the USA 101, 1281812823.CrossRefGoogle ScholarPubMed
Sojo, V, Herschy, B, Whicher, A, Camprubi, E and Lane, N (2016) The origin of life in alkaline hydrothermal vents. Astrobiology 16, 181197.CrossRefGoogle ScholarPubMed
Steele, A, McCubbin, FM, Fries, M, Kater, L, Boctor, NZ, Conrad, PG, Clamoclija, M, Spencer, M, Morrow, AL, Hammond, MR, Zare, RN, Vicenzi, EP, Siljeström, S, Bowden, R, Herd, CDK, Mysen, BO, Shirly, SB, Amundsen, HEF, Treiman, AH, Bullock, ES and Jull, AJT (2012) A reduced organic carbon component in Martian basalts. Science 337, 212215.CrossRefGoogle ScholarPubMed
Steele, A, Benning, LG, Siljeström, S, Fries, MD, Hauri, E, Conrad, PG, Rogers, K, Eigenbrode, J, Schreiber, A, Needham, A, Wang, JH, Mccubbin, FM, Kilcoyne, D and Rodriguez Blanco, JD (2018) Organic synthesis on Mars by electrochemical reduction of CO2. Science Advances 4, eaat5118.CrossRefGoogle ScholarPubMed
Stevens, TO and McKinley, JP (2000) Abiotic controls on H2 production from basalt−water reactions and implications for aquifer biogeochemistry. Environmental Science and Technology 34, 826831.CrossRefGoogle Scholar
Stubbs, RT, Yadav, M, Krishnamurthy, R and Springsteen, G (2020) A plausible metal-free ancestral analogue of the Krebs cycle composed entirely of α-ketoacids. Nature Chemistry 12, 10161022.CrossRefGoogle ScholarPubMed
Szopa, C, Freissinet, C, Glavin, DP, Millan, M, Buch, A, Franz, HB, Summons, RE, Sumner, DY, Sutter, B, Eigenbrode, JL and Williams, RH (2020) First detections of dichlorobenzene isomers and trichloromethylpropane from organic matter indigenous to Mars mudstone in Gale Crater, Mars: results from the Sample Analysis at Mars instrument onboard the Curiosity rover. Astrobiology 20, 292306.CrossRefGoogle ScholarPubMed
Tarnas, JD, Lin, H, Mustard, JF and Zhang, X (2018a) Characterization of serpentine and carbonate in Mars 2020 landing site candidates using integrated dynamic aperture target transformation and sparse unmixing (IDATTSU). Abstract submitted to 49th Lunar and Planetary Science Conference, Houston, TX. Lunar and Planetary Institute, Houston, p. 2236.Google Scholar
Tarnas, JD, Mustard, JF, Sherwood Lollar, B, Bramble, MS, Cannon, KM, Palumbo, AM and Plesa, A-C (2018b) Radiolytic H2 production on Noachian Mars: implications for habitability and atmospheric warming. Earth and Planetary Science Letters 502, 133145.CrossRefGoogle Scholar
Tian, F, Toon, OB, Pavlov, AA and De Sterck, H (2005) A hydrogen-rich early Earth atmosphere. Science 308, 10141017.CrossRefGoogle ScholarPubMed
Tivey, MK (2007) Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography 20, 5065.CrossRefGoogle Scholar
Tosca, NJ, Ahmen, IAM, Tutolo, BM, Ashpitel, A and Hurowitz, JA (2018) Magnetite authigenesis and the early warming of Mars. Nature Geoscience 11, 635639.CrossRefGoogle ScholarPubMed
Trail, D, Watson, EB and Tailby, N (2011) The oxidation state of Hadean magmas and implications for early Earth's atmosphere. Nature 480, 7982.CrossRefGoogle ScholarPubMed
Tsiotsias, AI, Charisiou, ND, Yentekakis, IV and Goula, MA (2020) The role of alkali and alkaline Earth metals in the CO2 methanation reaction and the combined capture and methanation of CO2. Catalysts 10, 812.CrossRefGoogle Scholar
Ueda, H, Sawaki, Y and Maruyama, S (2017) Reactions between olivine and CO2-rich seawater at 300 °C: implications for H2 generation and CO2 sequestration in early Earth. Geoscience Frontiers 8, 387396.CrossRefGoogle Scholar
Vago, JL, Westhall, F, Pasteur Instrument Teams, and Landing Site Selection Working Group, (2017) Habitability on early Mars and the search for biosignatures with the ExoMars rover. Astrobiology 17, 417514.CrossRefGoogle ScholarPubMed
Vance, SD, Hand, KP and Pappalardo, RT (2016) Geophicical controls of chemical disequilibria in Europa. Geophysical Research Letters 43, 48714979.CrossRefGoogle Scholar
Varma, SJ, Muchowska, KB, Chatelain, P and Moran, J (2018) Native iron reduces CO2 to intermediates and end-products of the acetyl-CoA pathway. Nature Ecology & Evolution 2, 10191024.CrossRefGoogle ScholarPubMed
Wächtershauser, G (1990) The case for the chemoautotrophic origin of life in an iron-sulfur world. Origins of Life and Evolution of the Biosphere: The Journal of the International Society for the Study of the Origin of Life 20, 173176.CrossRefGoogle Scholar
Wallendahl, A and Treimann, AH (1999) Geochemical models of low-temperature alteration of Martian rocks. Lunar and Planetary Science XXX, Abstract #1268. Lunar and Planetary Institute, Houston.Google Scholar
Webster, CR, Mahaffy, PR, Atreya, SK, Flesch, GJ, Mischna, MA, Meslin, PY, Farley, KA, Conrad, PG, Christensen, LE, Pavlov, AA, Martín-Torres, J, Zorzano, MP, McConnochie, TH, Owen, T, Eigenbrode, JL, Glavin, DP, Steele, A, Malespin, CA, Archer, PD, Sutter, B, Coll, P, Freissinet, C, McKay, CP, Moores, JE, Schwenzer, SP, Bridges, JC, Navarro-Gonzalez, R, Gellert, R, Lemmon, MT and The MSL Science Team (2015) Mars Methane detection and variability at Gale crater. Science 347, 415417.CrossRefGoogle ScholarPubMed
Webster, CR, Mahaffy, PR, Atreya, SK, Moores, JE, Flesch, GJ, Malespin, C, McKay, CP, Martinez, G, Smith, CL, Martin-Torres, J, Gomez-Elvira, J, Zorzano, MP, Wong, MH, Trainer, MG, Steele, A, Archer, D, Sutter, B, Coll, PJ, Freissinet, C, Meslin, PY, Gough, RV, House, CH, Pavlov, A, Eigenbrode, JL, Glavin, DP, Pearson, JC, Keymeulen, D, Christensen, LE, Schwenzer, SP, Smith, MD, Harri, AM, Genzer, M, Hassler, DM, Lemmon, M, Crisp, J, Sander, SP, Zurek, RW and Vasavada, AR (2018) Background levels of methane in Mars’ atmosphere show strong seasonal variations. Science 360, 10931096.CrossRefGoogle ScholarPubMed
Wei, J, Ge, Q, Yao, R, Wen, Z, Fang, C, Guo, L, Xu, H and Sun, J (2017) Directly converting CO2 into a gasoline fuel. Nature Communications 8, 15174.CrossRefGoogle ScholarPubMed
Weiss, BP, Yung, YL and Nealson, KH (2000) Atmospheric energy for subsurface life on Mars? Proceedings of the National Academy of Sciences of the United States of America 97, 1395-1399.Google ScholarPubMed
Weiss, MC, Sousa, FL, Mrnjavac, N, Neukirchen, S, Roettger, M, Nelson-Sathi, S and Martin, WF (2016) The physiology and habitat of the last universal common ancestor. Nature Microbiology 1, 16116.CrossRefGoogle ScholarPubMed
White, LM, Bhartia, R, Stucky, GD, Kanik, I and Russell, MJ (2015) Mackinawite and greigite in ancient alkaline hydrothermal chimneys: identifying potential key catalysts for emergent life. Earth and Planetary Science Letters 430, 105114.CrossRefGoogle Scholar
Wilde, SA, Valley, JW, Peck, WH and Graham, CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175178.CrossRefGoogle ScholarPubMed
Williams, AJ, Eigenbrode, J, Floyd, M, Wilhelm, MB, O'Reilly, S, Stewart Johnson, S, Craft, KL, Knudson, CA, Andrejkovičová, S, Lewis, JMT, Buch, A, Glavin, DP, Freissinet, C, Willians, RH, Szopa, C, Millan, M, Summons, RE, McAdam, A, Benison, K, Navarro-González, R, Malespin, C and Mahaffy, PR (2019) Recovery of fatty acids from mineralogic Mars analogs by TMAH thermochemolysis for the sample analysis at Mars Wet chemistry experiment on the curiosity rover. Astrobiology 19, 522-546.CrossRefGoogle ScholarPubMed
Wong, AS, Atreya, SK and Encrenaz, T (2003) Chemical markers of possible hot spots on Mars. Journal of Geophysical Research: Planets 108, E4.CrossRefGoogle Scholar
Xiong, W, Wells, RK, Menefee, AH, Skemer, P, Ellis, BR and Giammar, DE (2017) CO2 Mineral trapping in fractured basalt. International Journal of Greenhouse Gas Control 66, 204217.CrossRefGoogle Scholar
Yamaguchi, A, Yamamoto, M, Takai, K, Ishii, T, Hashimoto, K and Nakamura, R (2014) Electrochemical CO2 reduction by Ni-containing iron sulfides: how is CO2 electrochemically reduced at bisulfide-bearing deep-sea hydrothermal precipitates? Electrochimica Acta 141, 311318.CrossRefGoogle Scholar
Yung, YL, Chen, P, Nealson, K, Atreya, S, Beckett, P, Blank, JG, Ehlmann, B, Eiler, J, Etiope, G, Ferry, JG, Forget, F, Gao, P, Hu, R, Kleinböhl, A, Klusman, R, Lefèvre, F, Miller, C, Mischna, M, Mumma, M, Newman, S, Oehler, D, Okumura, M, Oremland, R, Orphan, V, Popa, R, Russell, M, Shen, L, Sherwood Lollar, B, Staehle, R, Stamenković, V, Stolper, D, Templeton, A, Vandaele, AC, Viscardy, S, Webster, CR, Wennberg, PO, Wong, ML and Worden, J (2018) Methane on Mars and habitability: challenges and responses. Astrobiology 18, 12211242.CrossRefGoogle ScholarPubMed
Zahnle, KJ, Lupu, R, Catling, DC and Wogan, N (2020) Creation and evolution of impact-generated reduced atmospheres of early Earth. Planetary Science Journal 1, 11.CrossRefGoogle Scholar
Zhao, D, Bartlett, S and Yung, YL (2020) Quantifying mineral-ligand structural similarities: bridging the geological world of minerals with the biological world of enzymes. Life 10, 338.CrossRefGoogle ScholarPubMed
Supplementary material: File

Prakash et al. supplementary material

Prakash et al. supplementary material

Download Prakash et al. supplementary material(File)
File 34.8 KB