Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T20:22:27.419Z Has data issue: false hasContentIssue false

Analysis of Mars analogue soil samples using solid-phase microextraction, organic solvent extraction and gas chromatography/mass spectrometry

Published online by Cambridge University Press:  20 January 2011

G. E. Orzechowska
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
R. D. Kidd*
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
B. H. Foing
Affiliation:
European Space Agency (ESA), ESTEC SRE-S, Postbus 299, 2200AG Noordwijk, The Netherlands
I. Kanik
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
C. Stoker
Affiliation:
NASA Ames Research Center, Moffett Field, CA 94035, USA
P. Ehrenfreund
Affiliation:
Space Policy Institute, George Washington University, Washington 20052, USA Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are robust and abundant molecules in extraterrestrial environments. They are found ubiquitously in the interstellar medium and have been identified in extracts of meteorites collected on Earth. PAHs are important target molecules for planetary exploration missions that investigate the organic inventory of planets, moons and small bodies. This study is part of an interdisciplinary preparation phase to search for organic molecules and life on Mars. We have investigated PAH compounds in desert soils to determine their composition, distribution and stability. Soil samples (Mars analogue soils) were collected at desert areas of Utah in the vicinity of the Mars Desert Research Station (MDRS), in the Arequipa region in Peru and from the Jutland region of Denmark. The aim of this study was to optimize the solid-phase microextraction (SPME) method for fast screening and determination of PAHs in soil samples. This method minimizes sample handling and preserves the chemical integrity of the sample. Complementary liquid extraction was used to obtain information on five- and six-ring PAH compounds. The measured concentrations of PAHs are, in general, very low, ranging from 1 to 60 ng g−1. The texture of soils is mostly sandy loam with few samples being 100 % silt. Collected soils are moderately basic with pH values of 8–9 except for the Salten Skov soil, which is slightly acidic. Although the diverse and variable microbial populations of the samples at the sample sites might have affected the levels and variety of PAHs detected, SPME appears to be a rapid, viable field sampling technique with implications for use on planetary missions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anyakora, C., Ogbeche, A., Palmer, P., Coker, H., Ukpo, G. & Ogah, C. (2005). GC/MS analysis of polynuclear aromatic hydrocarbons in sediment samples from the Niger Delta region. Chemosphere 60, 990997.CrossRefGoogle ScholarPubMed
Agency for Toxic Substances and Disease Registry (ATSDR) (1995). Toxicological profile for Polycyclic Aromatic Hydrocarbons (PAHs). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.Google Scholar
Benner, S.A., Devine, K.G., Matveeva, L.N. & Powell, D.H. (2000). The missing organic molecules on Mars. Proc. Natl. Acad. Sci. U.S.A. 97, 24252430.CrossRefGoogle ScholarPubMed
Berlardi, R.G. & Pawliszyn, J. (1989). The application of chemically modified fused silica fibers in the extraction of organics from water matrix samples and their rapid transfer to capillary columns. Water Pollut. Res. J. Can. 24, 179186.CrossRefGoogle Scholar
Biemann, K. & Lavoie, J.M. (1979). Some final conclusions and supporting experiments related to the search for organic compounds on the surface of Mars. J. Geophys. Res. 84, 83858390.CrossRefGoogle Scholar
Biemann, K., Oro, J., Toulmin, P., Orgel, L.E., Nier, A.O., Anderson, D.M., Simmonds, P.G., Flory, D., Diaz, A.V., Rushneck, D.R. et al. (1976). Search for organic and volatile inorganic compounds in two surface samples from the Chryse Planitia region of Mars. Science 194, 7276.CrossRefGoogle ScholarPubMed
Direito, S.O.L., Ehrenfreund, P., Mareas, A., Staats, M., Foing, B.H. & Roling, W.F.M. (2011). A wide variety of extremophiles and large beta-diversity at the Mars Desert Research Station (Utah). Int. J. Astrobiol. 10, 191207.CrossRefGoogle Scholar
Edwards, N.T. (1983). Polycyclic aromatic hydrocarbons (PAHs) in the terrestrial environment – a review. J. Environ. Qual. 12, 427441.CrossRefGoogle Scholar
Ehrenfreund, P., Röling, W.F.M., Thiel, C., Quinn, R., Septhon, M.A., Stoker, C., Direito, S.O.L., Kotler, M., Martins, Z., Orzechowska, G.E., Kidd, R.D. & Foing, B.H. (2011). Astrobiolgy and habitability studies in preparation for future Mars missions: trends from investigating minerals, organics and biota. Int. J. Astrobiol. 10, 239253.CrossRefGoogle Scholar
Eriksson, M., Faldt, J., Dalhammar, G. & Borg-Karlson, A.K. (2001). Determination of hydrocarbons in old creosote contaminated soil using headspace solid phase microextraction and GC-MS. Chemosphere 44, 16411648.CrossRefGoogle ScholarPubMed
Fillmore, R. (2000). The Geology of the Parks, Monuments and Wildlands of Southern Utah. University of Utah Press, Salt Lake City.Google Scholar
Grote, C. & Pawliszyn, J. (1997). Solid-phase microextraction for the analysis of human breath. Anal. Chem. 69, 587596.CrossRefGoogle ScholarPubMed
Hansen, A.A., Merrison, J.P., Nornberg, P., Lomstein, B.A. & Finster, K. (2005). Activity and stability of complex bacterial soil community under simulated Martian conditions. Int. J. Astrobiol. 4, 135144.CrossRefGoogle Scholar
Haritash, A.K. & Kaushik, C.P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J. Hazard. Mater. 169, 115.CrossRefGoogle ScholarPubMed
Havenga, W.J. & Rohwer, E.R. (1999). Chemical characterization and screening of hydrocarbon pollution in industrial soils by headspace solid-phase microextraction. J. Chromatogr. A 848, 279295.CrossRefGoogle ScholarPubMed
Hecht, M.H., Kounaves, S.P., Quinn, R.C., West, S.J., Young, S.M.M., Ming, D.W., Catling, D.C., Clark, B.C., Boynton, W.V., Hoffman, J. et al. . (2009). Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix lander site. Science 325, 6467.CrossRefGoogle ScholarPubMed
Hurowitz, J.A. & McLennan, S.M. (2007). A similar to 3.5 Ga record of water-limited, acidic weathering conditions on Mars. Earth Planet. Sci. Lett. 260, 432443.CrossRefGoogle Scholar
Imperial College, London (2008). Lab Manual; Soil Extraction Procedure, Imperial College Organic Geochemistry. Imperial College, London.Google Scholar
Jia, M.Y., Koziel, J. & Pawliszyn, J. (2000). Fast field sampling/sample preparation and quantification of volatile organic compounds in indoor air by solid-phase microextraction and portable gas chromatography. Field Anal. Chem. Tech. 4, 7384.3.0.CO;2-7>CrossRefGoogle Scholar
Kataoka, H., Lord, H.L. & Pawliszyn, J. (2000). Applications of solid-phase microextraction in food analysis. J. Chromatogr. A 880, 3562.CrossRefGoogle ScholarPubMed
Kotler, M., Martins, Z., Foing, B.H. & Ehrenfreund, P. (2011). Analysis of the mineral matrix of planetary soil analogs from the Utah desert. Int. J. Astrobiol. 10, 221229.CrossRefGoogle Scholar
Lord, H. & Pawliszyn, J. (2000). Evolution of solid-phase microextraction technology. J. Chromatogr. A 885, 153193.CrossRefGoogle ScholarPubMed
Martens, D., Maguhn, J., Spitzauer, P. & Kettrup, A. (1997). Occurrence and distribution of polycyclic aromatic hydrocarbons (PAHs) in an agricultural ecosystem. Fresenius J. Anal. Chem. 359, 546554.CrossRefGoogle Scholar
McKay, C.P. (1997). The search for life on Mars. Orig. Life Evol. Biosphere 27, 263289.CrossRefGoogle ScholarPubMed
McKay, D.S., Gibson, E.K., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D.F., Maechling, C.R. & Zare, R.N. (1996). Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science 273, 924930.CrossRefGoogle ScholarPubMed
Merrison, J., Jensen, J., Kinch, K., Mugford, R. & Nornberg, P. (2004). The electrical properties of Mars analogue dust. Planet. Space Sci. 52, 279290.CrossRefGoogle Scholar
Muijs, B. & Jonker, M.T.O. (2009). Temperature-dependent bioaccumulation of polycyclic aromatic hydrocarbons. Environ. Sci. Tech. 43, 45174523.CrossRefGoogle ScholarPubMed
Navarro-Gonzalez, R., Navarro, K.F., de la Rosa, J., Iniguez, E., Molina, P., Miranda, L.D., Morales, P., Cienfuegos, E., Coll, P., Raulin, F. et al. . (2006). The limitations on organic detection in Mars-like soils by thermal volatilization-gas chromatography-MS and their implications for the Viking results. Proc. Natl. Acad. Sci. U.S.A. 103, 1608916094.CrossRefGoogle ScholarPubMed
Nornberg, P., Schwertmann, U., Stanjek, H., Andersen, T. & Gunnlaugsson, H.P. (2004). Mineralogy of a burned soil compared with four anomalously red Quaternary deposits in Denmark. Clay Miner. 39, 8598.CrossRefGoogle Scholar
Orzechowska, G.E. & Paulson, S.E. (2005). Photochemical sources of organic acids. 1. Reaction of ozone with isoprene, propene, and 2-butenes under dry and humid conditions using SPME. J. Phys. Chem. A 109, 53585365.CrossRefGoogle ScholarPubMed
Pawliszyn, J., Ed. (1999). Applications of Solid Phase Microextraction. RSC Chormatography Monographs. RSC, Cambridge.CrossRefGoogle Scholar
Pawliszyn, J. (2000). Theory of solid-phase microextraction. J. Chromatogr. Sci. 38, 270278.CrossRefGoogle ScholarPubMed
Pawliszyn, J. & Martos, P. (1997). Air analysis by solid phase microextraction. Abstracts of Papers ACS 214, 187ANYL.Google Scholar
Peeters, Z., Quinn, R., Martins, Z., Sephton, M.A., Becker, L., van Loosdrecht, M.C.M., Brucato, J., Grunthaner, F. & Ehrenfreund, P. (2009). Habitability on planetary surfaces: interdisciplinary preparation phase for future Mars missions. Int. J. Astrobiol. 8, 301315.CrossRefGoogle Scholar
Quinn, R.C. & Orenberg, J. (1993). Simulations of the Viking gas exchange experiment using palagonite and Fe-rich montmorillonite as terrestrial analogs: implications for the surface composition of Mars. Geochim. Cosmochim. Acta 57, 46114618.CrossRefGoogle ScholarPubMed
Ray, S., Khillare, P.S., Agarwal, T. & Shridhar, V. (2008). Assessment of PAHs in soil around the international airport in Delhi, India. J. Hazard. Mater. 156, 916.CrossRefGoogle ScholarPubMed
Seiferlin, K., Ehrenfreund, P., Garry, J., Gunderson, K., Hutter, E., Kargl, G., Maturilli, A. & Merrison, J.P. (2008). Simulating Martian regolith in the laboratory. Planet. Space Sci. 56, 20092025.CrossRefGoogle Scholar
Sephton, M.A. & Botta, O. (2005). Recognizing life in the Solar System: guidance from meteoritic organic matter. Int. J. Astrobiol., 4, 269276.CrossRefGoogle Scholar
Skelley, A.M., Aubrey, A.D., Willis, P.A., Amashukeli, X., Ehrenfreund, P., Bada, J.L., Grunthaner, F.J. & Mathies, R.A. (2007). Organic amine biomarker detection in the Yungay region of the Atacama Desert with the Urey instrument. J. Geophys. Res. 112, G04S11, doi:10.1029/2006JG000329.Google Scholar
Song, Y.F., Jing, X., Fleischmann, S. & Wilke, B.M. (2002). Comparative study of extraction methods for the determination of PAHs from contaminated soils and sediments. Chemosphere 48, 9931001.CrossRefGoogle ScholarPubMed
Squeo, F.A., Holmgren, M., Jimenez, M., Alban, L., Reyes, J. & Gutierrez, J.R. (2007). Tree establishment along an ENSO experimental gradient in the Atacama desert. J. Vegetation Sci. 18, 195202.CrossRefGoogle Scholar
Stockton, A.M., Chiesl, T.N., Scherer, J.R. & Mathies, R.A. (2009). Polycyclic aromatic hydrocarbon analysis with the Mars organic analyzer microchip capillary electrophoresis system. Anal. Chem. 81, 790796.CrossRefGoogle ScholarPubMed
Supelco (2008). European Commission BCR Information Reference Materials-CRM 524.Google Scholar
Tielens, A. (2008). Interstellar polycyclic aromatic hydrocarbon molecules. Annu. Rev. Astron. Astrophys. 46, 289337.CrossRefGoogle Scholar
Williams, P.L. & Hackman, R.J. (1971). Geology of the Salina Quadrangle, Utah; Misc. geologic investigations, Map I-591-A, 1971.Google Scholar
Wu, J.C., Xie, W. & Pawliszyn, J. (2000). Automated in-tube solid phase microextraction coupled with HPLC-ES-MS for the determination of catechins and caffeine in tea. Analyst 125, 22162222.CrossRefGoogle ScholarPubMed
Zent, A.P. & McKay, C.P. (1994). The chemical reactivity of the Martian soil and implications for future missions. Icarus 108, 146157.CrossRefGoogle Scholar
Zolotov, M. & Shock, E. (1999). Abiotic synthesis of polycyclic aromatic hydrocarbons on Mars. J. Geophys. Res. – Planets 104, 1403314049.CrossRefGoogle Scholar