Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T02:27:31.107Z Has data issue: false hasContentIssue false

The AMINO experiment: RNA stability under solar radiation studied on the EXPOSE-R facility of the International Space Station

Published online by Cambridge University Press:  18 July 2014

Jacques Vergne
Affiliation:
UMR 7205 – ISyEB, CNRS-MNHN-UPMC Univ Paris 06, F–75005, Paris, France
Hervé Cottin
Affiliation:
Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, Créteil, France
Laura da Silva
Affiliation:
UMR 7205 – ISyEB, CNRS-MNHN-UPMC Univ Paris 06, F–75005, Paris, France
André Brack
Affiliation:
Centre de Biophysique Moléculaire, CNRS, Orléans, France
Didier Chaput
Affiliation:
Centre National d’Études Spatiales (CNES), Centre Spatial de Toulouse, 18 Av. Édouard Belin, 31401 Toulouse Cedex 9, France
Marie-Christine Maurel*
Affiliation:
UMR 7205 – ISyEB, CNRS-MNHN-UPMC Univ Paris 06, F–75005, Paris, France

Abstract

Careful examination of the present metabolism and in vitro selection of various catalytic RNAs strongly support the RNA world hypothesis as a crucial step of the origins and early life evolution. Small functional RNAs were exposed from 10 March 2009 to 21 January 2011 to space conditions on board the International Space Station in the EXPOSE-R mission. The aim of this study was to investigate the preservation or modification properties such as integrity of RNAs after space exposition. The exposition to the solar radiation has a strong degradation effect on the size distribution of RNA. Moreover, the comparison between the in-flight samples, exposed to the Sun and not exposed, indicates that the solar radiation degrades RNA bases.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beuselinck, T. & Bavinchove, C.V. (2011). EXPOSE: environmental history by calculation: EXPOSE-R simulation results, REDSHIFT company. Report under ESA contract 4000102520.Google Scholar
Bossa, J.B., Duvernay, F., Theule, P., Borget, F., d'Hendecourt, L. & Chiavassa, T. (2009). Methylammonium methylcarbamate thermal formation in interstellar ice analogs: a glycine salt precursor in protostellar environments. Astron. Astrophys. 506, 601608.Google Scholar
Callahan, M.P., Smith, K.E., Cleaves, H.J. II, Ruzicka, J., Stern, J.C., Glavin, D.P., House, C.H. & Dworkin, J.P. (2011). Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc. Natl. Acad. Sci. USA 108(34), 1399513998.Google Scholar
Cech, T.R. (1987). The chemistry of self-splicing RNA and RNA enzymes. Science 236, 15321539.Google Scholar
Cornée, A., Vergne, J., Guyot, F., Goffe, B., Rouchy, J.M. et Maurel, M.C. (2004). Effet protecteur des cristaux de NaCl pour des macromolécules biologiques (ARN). Approche expérimentale. Résumés en français et en anglais, Atelier Microbialithes et communautés microbiennes dans les systèmes sédimentaires, SGF, ASF et PNEC, Paris, 69 septembre 2004, 31–34.Google Scholar
Cottin, et al. (2014). Personal communication.Google Scholar
Delan-Forino, C., Deforges, J., Benard, L., Sargueil, B., Maurel, M-C. & Torchet, C. (2014). Structural analyses of Avocado sunblotch viroid reveal differences in the folding of plus and minus RNA strands. Viruses 6, 489506.Google Scholar
Delsemme, A.H. (2000). 1999 kuiper prize lecture cometary origin of the biosphere. Icarus 146, 313325.CrossRefGoogle Scholar
Demets, R. et al. (2014). Window contamination on EXPOSE-R. Int. J. Astrobiol, volume 13, in press.Google Scholar
Dundas, I. (1998). Was the environment for primordial life hypersaline? Extremophiles 2, 375377.CrossRefGoogle ScholarPubMed
El-Murr, N., Maurel, M-C., Rihova, M., Vergne, J., Hervé, G., Kato, M. & Kawamura, K. (2012). Behavior of a hammerhead ribozyme in aqueous solution at medium to high temperatures. Naturwissenschaften 9, 731738.Google Scholar
Eschenmoser, A. & Loewenthal, E. (1992). Chemistry of potentially prebiological natural products. Chem. Soc. Rev. 21, 116.CrossRefGoogle Scholar
Gesteland, R.F. & Atkins, J.F. (1993). The RNA World. Cold Spring Harbor Laboratory Press, New York.Google Scholar
Gilbert, W. 1986. Origin of life: the RNA world. Nature 319, 618.CrossRefGoogle Scholar
Guerrier-Tanaka, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. (1983). The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849857.Google Scholar
Hui-Bon-Hoa, G., Kaddour, H., Vergne, J., Kruglik, S.G. & Maurel, M-C. (2014). Raman characterization of Avocado Sunblotch viroid and its response to external perturbations and self-cleavage. BMC Biophys. 7, 215.Google Scholar
Kargel, J.S. (1998). The salt of Europa. Science 280, 12111212.Google Scholar
Knauth, L.P. (1998). Salinity history of the Earth's early ocean. Nature 395, 554555.CrossRefGoogle ScholarPubMed
Kobayashi, K., Kaneko, T., Saito, T. & Oshima, T. (1998). Amino acids formation in gas mixtures by high energy particle irradiation. Orig. Life Evol. Biosph. 28, 155165.Google Scholar
Le Pec, J.B. & Paoletti, C. (1966). A new fluorometric method for RNA and DNA determination. Anal. Biochem. 17, 100107.Google Scholar
Maurel, M-C. (1992). RNA in evolution: a review. J. Evol. Biol 5, 173188.Google Scholar
Maurel, M-C. & Décout, J-L. (1999). Origins of life: molecular foundations and new approaches. Tetrahedron 55, 31413182.Google Scholar
Maurel, M-C. & Haenni, A-L. (2005). The RNA world: hypothesis, facts and experimental results. In Lectures in Astrobiology. eds. Berlin: Springer-Verlag, pp. 571594.Google Scholar
Maurel, M-C. & Ninio, J. (1987). Catalysis by a prebiotic nucleotide analog of histidine. Biochimie 69, 551553.Google Scholar
Maurel, M-C. & Zaccai, G. (2001). Why biologists should support the exploration of Mars. Bioessays 23, 977978.Google Scholar
Meinert, C., Filippi, J.-J., Marcellus, P.d., d'Hendecourt, L.L.S. & Meierhenrich, U.J. (2012). N-(2-Aminoethyl)glycine and amino acids from interstellar ice analogues. ChemPlusChem 77, 186191.Google Scholar
Meli, M., Vergne, J., Décout, J-L. & Maurel, M-C. (2002). Adenine-aptamer complexes. A bipartite RNA site which binds the adenine nucleic base. J. Biol. Chem. 277(3), 21042111.Google Scholar
Meli, M., Vergne, J. & Maurel, M-C. (2003). In vitro selection of adenine-dependent hairpin ribozymes. J. Biol. Chem. 278, 98359842.Google Scholar
Miller, S.L. (1953). Production of amino acids under possible primitive Earth conditions. Science 117(3046), 528529.CrossRefGoogle ScholarPubMed
Miyakawa, S., Murasawa, K., Kobayashi, K. & Sawaoka, A.B. (1999). Cytosine and uracil synthesis by quenching with high-temperature plasma. J. Am. Chem. Soc. 121, 81448145.Google Scholar
Oro, J. (1961). Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive Earth conditions. Nature 191, 11931194.Google Scholar
Oro, J., Mills, T. & Lazcano, A. (1992). Comets and the formation of the biochemical compounds on the primitive Earth. Orig. Life Evol. Biosph. 21, 267277.CrossRefGoogle ScholarPubMed
Powner, M.W., Gerland, B. & Sutherland, J.D. (2009). Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239242.Google Scholar
Rabbow, E. et al. (2014). The astrobiological mission EXPOSE-R on board of the International Space Station. Int. J. Astrobiol, volume 13, in press.Google Scholar
Saiagh, K., Cloix, M., Fray, N. & Cottin, H. (2014). VUV and Mid-UV photoabsorption cross sections of thin films of adenine: application on its photochemistry in the Solar System. Planet. Space Sci. 90, 9099.CrossRefGoogle Scholar
Sutherland, J.D. & Whitfield, J.N. (1997). Prebiotic chemistry: a bioorganic perspective. Tetrahedron 53, 1159511626.Google Scholar
Tehei, M., Franzetti, B., Maurel, M-C., Vergne, J., Hountondji, C. & Zaccai, G. (2002). The search for traces of life: the protective effect of salt on biological macromolecules. Extremophiles 6, 427430.Google Scholar
Vergne, J., Dumas, L., Décout, J-L. & Maurel, M-C. (2000). Possible prebiotic catalysts formed from adenine and aldehyde. Planet. Space Sci. 48, 11391142.Google Scholar
Vergne, J., Cognet, J.A., Szathmáry, E. & Maurel, M-C. (2006). In vitro selection of halo-thermophilic RNA reveals two families of resistant RNA. Gene 371, 182193.Google Scholar