Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T20:22:52.694Z Has data issue: false hasContentIssue false

Study of interaction and adsorption of aromatic amines by manganese oxides and their role in chemical evolution

Published online by Cambridge University Press:  10 May 2016

Brij Bhushan*
Affiliation:
Department of Chemistry, Graphic Era University, Dehradun-248002 (U.K.), India
Arunima Nayak
Affiliation:
IRIS Research-Engineering-Technology, Castelldefels, Barcelona 08860, Spain
Kamaluddin
Affiliation:
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667 (U.K.), India

Abstract

The role of manganese oxides in concentrating organic moieties and offering catalytic activity for prebiotic reactions is investigated by studying their interaction with different aromatic amines such as aniline, p-chloroaniline, p-toluidine and p-anisidine. For all amines, metal oxides showed highest adsorption at neutral pH. The order of their adsorption capacity and affinity as revealed by the Langmuir constants was found to be manganosite (MnO) > bixbyite (Mn2O3) > hausmannite (Mn3O4) > and pyrolusite (MnO2). At alkaline pH, these manganese oxides offered their surfaces for oxidation of amines to form coloured oligomers. Analysis of the oxidation products by gas chromatography–mass spectrometry showed the formation of a dimer from p-anisidine and p-chloroaniline, while a trimer and tetramer is formed from p-toluidine and aniline, respectively. A reaction mechanism is proposed for the formation of the oligomers. While field-emission scanning electron microscopic studies confirm the binding phenomenon, the Fourier transform infrared spectroscopy analysis suggests that the mechanism of binding of amines on the manganese oxides was primarily electrostatic. The adsorption behaviour of the studied aromatic amines followed the order: p-anisidine > p-toluidine > aniline > p-chloroaniline, which is related to the basicities and structure of the amines. Our studies confirmed the significance of the role of manganese oxides in prebiotic chemistry.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alam, T. & Kamaluddin, (1999). Bull. Chem. Soc. Jpn. 72, 16971703.Google Scholar
Alam, T. & Kamaluddin, (2000). Colloids Surf. 162, 8997.CrossRefGoogle Scholar
Ali, S. & Kamaluddin, (2004). Bull. Chem. Soc. Jpn. 77, 16811686.Google Scholar
Ali, S. & Kamaluddin, (2006). Bull. Chem. Soc. Jpn. 79, 15411546.Google Scholar
Ali, S. & Kamaluddin, (2007). Orig. Life. Evol. Biosph. 37, 225234.Google Scholar
Alam, T., Tarannum, H., Kumar, N. & Kamaluddin, (2000a). J. Colloid Interface Sci. 224, 133139.Google Scholar
Alam, T., Tarannum, H., Ravi, M.N.V. & Kamaluddin, (2000b). Talanta 51, 10971105.Google Scholar
Alam, T., Gairola, P., Tarannum, H., Kamaluddin, & Ravi, M.N.V. (2000c). Indian J. Chem. Technol. 7, 230235.Google Scholar
Alam, T., Tarannum, H., Ali, S. & Kamaluddin, (2002). J. Colloid Interface Sci. 245, 251256.Google Scholar
Ali, S., Ahmad, J. & Kamaluddin, (2004a). Colloids Surf. A: Physicochem. Eng. Aspects 236, 165169.Google Scholar
Ali, S., Alam, T. & Kamaluddin, (2004b). Astrobiology 4, 420426.Google Scholar
Antelo, J., Avena, M., Fiol, S., Lopez, R. & Arce, F. (2005). J. Colloid Interface Sci. 285, 476486.Google Scholar
Arora, A.K. & Kamaluddin, (2007). Colloids Surf. A: Physicochem. Eng. Aspect 298, 186191.Google Scholar
Arora, A.K. & Kamaluddin, (2009). Astrobiology 9, 165171.Google Scholar
Arora, A.K., Tomar, V., Aarti, N., Venkateswararao, K. T. & Kamaluddin, (2007). Int. J. Astrobiol. 6, 267271.CrossRefGoogle Scholar
Atkins, P. & de Paul, J. (2002). Atkins’ Physical Chemistry, 7th edn. Oxford University Press, Oxford.Google Scholar
Bernal, J.D. (1951). The Physical Basis of Life. Routledge and Kegan Paul, London, p. 34.Google Scholar
Bish, D.L. & Post, J.E. (1988). Am. Mineral. 74, 861869.Google Scholar
Bhushan, B., Shanker, U. & Kamaluddin, (2011). Orig. Life Evol. Biosph. 41, 469482.CrossRefGoogle Scholar
Boyd, S.A. & Mortland, M.M. (1986). Environ. Sci. Technol. 20, 10561058.Google Scholar
Burns, R.G., Burns, V.M. & Stockman, H.W. (1985). Am. Mineral. 70, 205208.Google Scholar
Chien-To, H. & Hsisheng, T. (2000). Carbon 38, 863869.Google Scholar
Chitrakar, R., Tezuka, S., Sonoda, A., Sakane, K., Ooi, K. & Hirotsu, T. (2006) J. Colloid Interface Sci. 298, 602608.Google Scholar
Daou, T.J., Begin-Colin, S. & Greneche, J.M. (2007). Chem. Mater. 19, 44944505.Google Scholar
De Guzman, R.N., Shen, Y.F., Shaw, B.R., Suib, S.L. & O'young, C.L. (1993). Chem. Mater. 5, 13951400.Google Scholar
Ertem, G. & Ferris, J.P. (1997). J. Am. Chem. Soc. 119, 71977201.Google Scholar
Friedmann, N. & Miller, S.L. (1969). Science 166, 766767.Google Scholar
Ferris, J.P. & Hagan, W.J. (1986). J. Orig. Life 17, 6984.Google Scholar
Ferris, J.P. & Kamaluddin, (1979). Orig. Life Evol. Biosph. 19, 609619.Google Scholar
Furukawa, T. & Brindley, G.W. (1973). Clays Clay Miner. 21, 279288.Google Scholar
Graf, G. & Laganly, G. (1980). Clays Clay Miner. 28, 1218.Google Scholar
Govindraj, N., Mortland, M.M. & Boyd, S.A. (1987). Environ. Sci. Technol. 21, 11191123.Google Scholar
Greenland, D.J., Laby, R. & Quirk, J.P. (1962). Trans. Faraday Soc. 58, 829841.Google Scholar
Greenland, D.J., Laby, R. & Quirk, J.P. (1965). Trans. Faraday Soc. 61, 20242035.Google Scholar
Hroacki, S. & Hiromichi, W. (1999). J. Org. Chem. 64, 58365840.Google Scholar
Issacson, P.J. & Sawhney, B.L. (1983). Clay Miner. 18, 253265.Google Scholar
Jortner, J. (2006). Phil. Trans. R. Soc. B 361, 18771891.Google Scholar
Julian, C.B. & Suzanne, D.G. (1992). Clays Clay Miner. 40, 273279.Google Scholar
Kamaluddin, (2001). Studies on metal ferrocyanides as prebiotic catalyst. In First Steps in the Origin of Life in the Universe, ed. Chela-Flores, J. et al. , pp. 95. Kluwer Academic Publishers, Netherlands.Google Scholar
Kowalska, M. & Cocke, D.L. (1992). Clays Clay Miner. 40, 237239.Google Scholar
Kowalska, M.W., Ortego, J.D. & Jezierski, A. (2001). Appl. Clay Sci. 18, 233243.Google Scholar
Kobayashi, K. & Ponnamperuma, C. (1985a). Orig. Life 15, 55.Google Scholar
Kobayashi, K. & Ponnamperuma, C. (1985b). Orig. Life 16, 67.Google Scholar
Laha, S. & Luthy, R.G. (1990). Environ. Sci. Technol., 24, 363373.CrossRefGoogle Scholar
Li, L. & Stanforth, R. (2000). J. Colloid Interface Sci. 230, 1221.Google Scholar
Miller, S.L. (1953). Science 117, 528529.Google Scholar
Oparin, A.I. (1938). The Origin of Life. Macmillan, New York.Google Scholar
Pizzigallo, M.D.R., Ruggiero, P., Crecchio, C. & Mascolo, G. (1998). J. Agric. Food Chem. 46, 20492054.Google Scholar
Soma, Y. & Soma, M. (1989). Chemosphere 18, 18951902.Google Scholar
Shanker, U., Bhushan, B., Bhattacharjee, G. & Kamaluddin, (2011). Astrobiology 11, 225233.Google Scholar
Shanker, U., Singh, G. & Kamaluddin, (2013). Orig. Life Evol. Biosph. 43, 207220.Google Scholar
Shen, Y.F., Zerger, R.P., Suib McCurdy, L., Potter, D.I. & O'Young, C.L. (1992). J. Chem. Chem. Commun. 17, 12131214.Google Scholar
Urey, H. (1952). On the early chemical history of the Earth and the origin of life. Proc. Natl. Acad. Sci. USA 38, 351363.Google Scholar
Viladkar, S., Alam, T. & Kamaluddin, (1994). J. Inorg. Biochem. 53, 6978.CrossRefGoogle Scholar
Visscher, J. & Schwartz, A.W. (1989). J. Mol. Evol. 29, 284287.Google Scholar
Yao, W. & Millero, F.J. (1996). Environ. Sci. Technol. 30, 536541.Google Scholar