Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T15:59:18.376Z Has data issue: false hasContentIssue false

The Mt John University Observatory search for Earth-mass planets in the habitable zone of α Centauri

Published online by Cambridge University Press:  06 May 2014

Michael Endl*
Affiliation:
McDonald Observatory, The University of Texas at Austin, Austin TX 78712, USA
Christoph Bergmann
Affiliation:
Department of Physics & Astronomy, The University of Canterbury, Christchurch 8041, New Zealand
John Hearnshaw
Affiliation:
Department of Physics & Astronomy, The University of Canterbury, Christchurch 8041, New Zealand
Stuart I. Barnes
Affiliation:
McDonald Observatory, The University of Texas at Austin, Austin TX 78712, USA Department of Physics & Astronomy, The University of Canterbury, Christchurch 8041, New Zealand
Robert A. Wittenmyer
Affiliation:
Department of Astrophysics and Optics, School of Physics, University of New South Wales, Sydney, Australia
David Ramm
Affiliation:
Department of Physics & Astronomy, The University of Canterbury, Christchurch 8041, New Zealand
Pam Kilmartin
Affiliation:
Department of Physics & Astronomy, The University of Canterbury, Christchurch 8041, New Zealand
Fraser Gunn
Affiliation:
Department of Physics & Astronomy, The University of Canterbury, Christchurch 8041, New Zealand
Erik Brogt
Affiliation:
Academic Development Group, The University of Canterbury, Christchurch 8041, New Zealand

Abstract

The ‘holy grail’ in planet hunting is the detection of an Earth-analogue: a planet with similar mass as the Earth and an orbit inside the habitable zone. If we can find such an Earth-analogue around one of the stars in the immediate solar neighbourhood, we could potentially even study it in such great detail to address the question of its potential habitability. Several groups have focused their planet detection efforts on the nearest stars. Our team is currently performing an intensive observing campaign on the α Centauri system using the High Efficiency and Resolution Canterbury University Large Échelle Spectrograph (Hercules) at the 1 m McLellan telescope at Mt John University Observatory in New Zealand. The goal of our project is to obtain such a large number of radial velocity (RV) measurements with sufficiently high temporal sampling to become sensitive to signals of Earth-mass planets in the habitable zones of the two stars in this binary system. Over the past few years, we have collected more than 45 000 spectra for both stars combined. These data are currently processed by an advanced version of our RV reduction pipeline, which eliminates the effect of spectral cross-contamination. Here we present simulations of the expected detection sensitivity to low-mass planets in the habitable zone by the Hercules programme for various noise levels. We also discuss our expected sensitivity to the purported Earth-mass planet in a 3.24-day orbit announced by Dumusque et al. (2012).

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbieri, M., Marzari, F. & Scholl, H. (2002). Astron. Astrophys. 396, 219.CrossRefGoogle Scholar
Bergmann, C. et al. (2012). The Formation, Detection, and Characterization of Habitable Extrasolar Planets, Proceedings of the IAU Symposium 293, ed. Nader Haghighipour (Cambridge University Press) (accepted).Google Scholar
Borucki, W.J. et al. (2010). Science 327, 977.CrossRefGoogle Scholar
Borucki, W.J. et al. (2012). Astrophys. J. 745, 120.CrossRefGoogle Scholar
Borucki, W.J. et al. (2013). Science 340, 587.Google Scholar
Butler, R.P. et al. (1996). Publ. Astron. Soc. Pacific 108, 500.Google Scholar
Campbell, B. & Walker, G.A.H. (1979). Publ. Astron. Soc. Pacific 91, 540.Google Scholar
Cochran, W.D. & Hatzes, A.P. (1996). Astrophys. Space Sci. 241, 43.Google Scholar
Dressing, C.D. & Charbonneau, D. (2013). Astrophys. J. 767, 95.CrossRefGoogle Scholar
Dumusque, X. et al. (2012). Nature 491, 207.Google Scholar
Eggenberger, P. et al. (2004). Astron. Astrophys. 417, 235.CrossRefGoogle Scholar
Endl, M. & Kürster, M. (2008). Astron. Astrophys. 488, 1149.Google Scholar
Endl, M., Kürster, M. & Els, S. (2000). Astron. Astrophys. 362, 585.Google Scholar
Endl, M. et al. (2001). Astron. Astrophys. 374, 675.Google Scholar
Endl, M. et al. (2002). Astron. Astrophys. 392, 671.Google Scholar
England, M. (1980). Mon. Not. R. Astron. Soc. 191, 23.Google Scholar
Fressin, F. et al. (2013). Astrophys. J. 766, 81.Google Scholar
Furenlid, I. & Meylan, T. (1990). Astrophys. J. 350, 827.CrossRefGoogle Scholar
Guedes, J.M. et al. (2008). Astrophys. J. 679, 1582.Google Scholar
Hatzes, A.P. (2013). Astrophys. J. 770, 133.CrossRefGoogle Scholar
Hearnshaw, J.B. et al. (2002). Exp. Astron. 13, 59.Google Scholar
Heintz, W.D. (1982). Observatory 102, 42.Google Scholar
Howard, A.W. et al. (2012). Astrophys. J. Suppl. 201, 15.CrossRefGoogle Scholar
Kaltenegger, L. & Haghighipour, N. (2013). Astrophys. J. 777, 165.CrossRefGoogle Scholar
Kürster, M. et al. (1994). ESO Messenger 76, 51.Google Scholar
Lomb, N.R. (1976). Astrophys. Space Sci. 39, 477.Google Scholar
Mayor, M. et al. (2003). ESO Messenger 114, 20.Google Scholar
Murdoch, K.A., Hearnshaw, J.B. & Clark, M. (1993). Astrophys. J. 413, 349.CrossRefGoogle Scholar
Pepe, F. et al. (2011). Astron. Astrophys. 534, 58.Google Scholar
Pepe, F.A. et al. (2014). Astron. Nachr. 335, 8.CrossRefGoogle Scholar
Petigura, E.A., Marcy, G.W. & Howard, A.W. (2013). Astrophys. J. 770, 69.Google Scholar
Porto de Mello, G.F., Lyra, W. & Keller, G.R. (2008). Astron. Astrophys. 488, 653.Google Scholar
Pourbaix, D., Neuforge-Verheecke, C. & Noels, A. (1999). Astron. Astrophys. 344, 172.Google Scholar
Pourbaix, D., Nidever, D., McCarthy, C., Butler, R.P., Tinney, C.G., Marcy, G.W., Jones, H.R.A., Penny, A.J., Carter, B.D., Bouchy, F., et al. (2002). Astron. Astrophys. 386, 280.Google Scholar
Quintana, E.V., Lissauer, J.J., Chambers, J.E. & Duncan, M.J. (2002). Astrophys. J. 576, 982.Google Scholar
Quintana, E.V. & Lissauer, J.J. (2006). Icarus 185, 1.Google Scholar
Quintana, E.V., Adams, F.C., Lissauer, J.J. & Chambers, J.E. (2007). Astrophys. J. 660, 807.CrossRefGoogle Scholar
Scargle, J.D. (1982). Astrophys. J. 263, 835.Google Scholar
Szentgyorgyi, A., Frebel, A., Furesz, G., Hertz, E., Norton, T., Bean, J., Bergner, H., Crane, J., Evans, J., Evans, I., et al. (2012). Ground-based and Airborne Instrumentation for Astronomy IV. In Proc. SPIE, 8446, 84461H.Google Scholar
Thebault, P., Marzari, F. & Scholl, H. (2008). Mon. Not. R. Astron. Soc. 388, 1528.Google Scholar
Thebault, P., Marzari, F. & Scholl, H. (2009). Mon. Not. R. Astron. Soc. 393, 21.Google Scholar
Tuomi, M., Jones, H.R.A., Jenkins, J.S., Tinney, C.G., Butler, R.P., Vogt, S.S., Barnes, J.R., Wittenmyer, R.A., O'Toole, S., Horner, J., et al. (2013). Astron. Astrophys. 551, id.A79, 21 pp.Google Scholar
Wertheimer, J.G. & Laughlin, G. (2006). Astron. J. 132, 1995.Google Scholar
Wiegert, P.A. & Holman, M.J. (1997). Astron. J. 113, 1445.CrossRefGoogle Scholar
Wittenmyer, R.A. et al. (2012). The Formation, Detection, and Characterization of Habitable Extrasolar Planets, Proc. IAU Symp. 293, ed. Nader Haghighipour (Cambridge University Press) (accepted).Google Scholar
Xie, J.-W., Zhou, J.-L. & Ge, J. (2010). Astrophys. J. 708, 15661578.Google Scholar
Zechmeister, M., Kürster, M. & Endl, M. (2009). Astron. Astrophys. 505, 859.CrossRefGoogle Scholar