Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-09T15:20:02.976Z Has data issue: false hasContentIssue false

Laboratory simulation of ultraviolet irradiation from the Sun on amino acids. III. irradiation of glycine-tyrosine

Published online by Cambridge University Press:  15 January 2009

F. Scappini*
Affiliation:
Istituto per lo Studio dei Materiali Nanostrutturati del C.N.R., Via P. Gobetti, 101, 40129Bologna, Italy
M.L. Capobianco
Affiliation:
Istituto per la Sintesi Organica e la Fotoreattività del C.N.R., Via P. Gobetti, 101, 40129Bologna, Italy
F. Casadei
Affiliation:
Istituto per lo Studio dei Materiali Nanostrutturati del C.N.R., Via P. Gobetti, 101, 40129Bologna, Italy
R. Zamboni
Affiliation:
Istituto per lo Studio dei Materiali Nanostrutturati del C.N.R., Via P. Gobetti, 101, 40129Bologna, Italy

Abstract

The effects of near ultraviolet (UV) radiation on water solutions of tyrosine and glycine-tyrosine are investigated using a broadband xenon lamp in the region 200–800 nm. These experiments form a contribution in the laboratory simulation of the solar irradiation on the building blocks of life with regard to the origin of life. Results are presented showing the photodecomposition of tyrosine and glycine-tyrosine, at different concentrations, against UV doses. The analysis of the irradiated solutions is carried out by spectroscopic and analytical techniques. The findings of our laboratory simulations are used to constrain the early stages of the life emerging process.

Type
Research Article
Copyright
Copyright © 2009 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, J.M. (1997). Biochemical Soc. Trans. 25, S651.CrossRefGoogle Scholar
Bensasson, R.V., Land, E.J. & Truscott, T.G. (1983). Flash Photolysis and Pulse Radiolysis. Contributions to the Chemistry of Biology and Medicine. Pergamon Press, Oxford.Google Scholar
Bernal, J. (1967). Origin of Life. World Publishing Company, Cleveland.Google Scholar
Cecchi-Pestellini, C. et al. to be published.Google Scholar
Creed, D. (1984). Photochem. Photobiol. 39, 563575.CrossRefGoogle Scholar
Davies, M.J. & Truscott, R.J.W. (2001). J. Phochem. Photobiol. B: Biol. 63, 114125.CrossRefGoogle Scholar
Davies, P. (1995). Are We Alone? Philosophical Implications of the Discovery of Extraterrestrial Life. BasicBooks, New York.Google Scholar
Deamer, D.W. (1997). Microbiol. Molecular Biol. Rev. 61, 239261.Google Scholar
Ehrenfreund, P., Bernstein, M.P., Dworkin, J.P., Sandford, S.A. & Allamandola, L.J. (2001). Astrophys. J. 550, L95L99.CrossRefGoogle Scholar
Frye, I. (2000). The Emergence of Life on Earth: A Simple Overview. Rutgers University Press, New Brunsvick, NJ.Google Scholar
Gilbert, W. (1986). Nature 319, 618.CrossRefGoogle Scholar
Hawking, S.W., Thorne, K., Novikov, I., Timothy, F. & Lighman, A. (2002). The Future of Space Time. W.W. Simon, New York.Google Scholar
Hoyle, F. & Wickramasinghe, C. (1979). Diseases from Space. Dent, London.Google Scholar
Hoyle, F. & Wickramasinghe, C. (1981). Evolution from Space. Dent, London.Google Scholar
Hoyle, F. (1983). The Intelligent Universe. Michael Ioseph Ltd., London.Google Scholar
Kaku, M. (2005). Parallel Worlds. Random House, New York.Google Scholar
Leman, L., Orgel, L. & Ghadiri, M.R. (2004). Science. 306, 283286.CrossRefGoogle Scholar
Levine, M. & Breslow, R. (2008). 235th ACS National Meeting, New Orleans, LA. ACS Publishing Division, Washington, DC.Google Scholar
Maxam, A.M. & Gilbert, W. (1977). Proc. Natl. Acad. Sci. 74(2), 560564.CrossRefGoogle Scholar
Miller, S.L. (1953). Science 117, 528529.CrossRefGoogle Scholar
O'Donnell, J.H. & Sangster, D.F. (1970). Principles of Radiation Chemistry. Edward Arnold Ltd., London.Google Scholar
Ponnamperuma, C. & Peterson, E. (1965). Science. 147(3665), 15721574.CrossRefGoogle Scholar
Rudnick, L., Brown, S. & Williams, L.R. (2007). Astrophys. J. 671(1), 4044.CrossRefGoogle Scholar
Scappini, F., Capobianco, M.L., Casadei, F., Zamboni, R. & Giorgianni, P. (2007b). Int. J. Astrobiology. 6(4), 281289.CrossRefGoogle Scholar
Scappini, F., Casadei, F., Zamboni, R., Monti, S., Giorgianni, P. & Capobianco, M.L. (2007a). Int. J. Astrobiology. 6(2), 123129.CrossRefGoogle Scholar
Shapiro, R. (2006). Quart. Rev. Biol. 81(2), 106124.Google Scholar
Sowerby, S.J., Petersen, G.B. & Holm, N.G. (2001). Proc. Natl. Acad. Sci. USA 98, 820822.CrossRefGoogle Scholar
Steinman, G., Lemmon, R.M. & Calvin, M. (1965). Science. 147(3665), 15741575.CrossRefGoogle Scholar
Tehrany, M.G., Lammer, H., Selsis, F., Ribas, I., Guinan, E.F. & Hanslmeier, A. (2002). The Tenth European Solar Physics Meeting, ed.Wilson, A., pp. 209212. ESA SP-505. ESA Publications Division, Paris.Google Scholar
Wächterhäuser, G. (1990). Proc. Natl. Acad. Sci. USA 87, 200204.CrossRefGoogle Scholar
Ward, P.D. & Brownlee, D. (2000). Rare Earth. Springer, New York.CrossRefGoogle Scholar
Zelik, M. & Gregory, S.A. (1998). Astronomy & Astrophysics. Sounders College Publishing Division, New York.Google Scholar