Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T18:48:22.090Z Has data issue: false hasContentIssue false

A comparative study of endolithic microborings in basaltic lavas from a transitional subglacial–marine environment

Published online by Cambridge University Press:  05 January 2009

Claire R. Cousins*
Affiliation:
Centre for Planetary Sciences, UCL/Birkbeck Research School of Earth Sciences, Gower Street, London WC1E 6BT, UK
John L. Smellie
Affiliation:
British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK
Adrian P. Jones
Affiliation:
Centre for Planetary Sciences, UCL/Birkbeck Research School of Earth Sciences, Gower Street, London WC1E 6BT, UK
Ian A. Crawford
Affiliation:
Centre for Planetary Sciences, UCL/Birkbeck Research School of Earth Sciences, Gower Street, London WC1E 6BT, UK

Abstract

Subglacially erupted Neogene basaltic hyaloclastites in lava-fed deltas in Antarctica were found to contain putative endolithic microborings preserved in fresh glass along hydrous alteration boundaries. The location and existence over the past 6 Ma of these lava deltas has exposed them to successive interglacials and subsequent percolation of the hyaloclastite with marine water. A statistical study of the hyaloclastites has found that endolithic microborings are distinctly more abundant within samples that show evidence for marine alteration, compared with those that have remained in a strictly freshwater (glacial) environment. Additionally, correlation between elevation and the abundance of microborings shows endolithic activity to be more prolific within lower elevation samples, where the hyaloclastites were influenced by marine fluids. Our study strongly suggests that endolithic microborings form more readily in marine-influenced, rather than freshwater environments. Indeed, marine fluids may be a necessary precondition for the microbial activity responsible. Thus, we suggest that the chemistry and origin of alteration fluids are controlling factors on the formation of endolithic microborings in basaltic glass. The study also contributes to the understanding of how endolithic microborings could be used as a biosignature on Mars, where basaltic lavas and aqueous alteration are known to have existed in the past.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banerjee, N.R., Furnes, H., Muehlenbachs, K. & Staudigel, H. (2004a). Microbial alteration of volcanic glass in modern and ancient oceanic crust as a proxy for studies of extraterrestrial material. In Proc. Lunar and Planetary Science Conf., XXXV (LPI Contribution No. 1197, abstract 1248). Lunar and Planetary Institute, Houston.Google Scholar
Banerjee, N.R., Furnes, H., Simonetti, A., Muehlenbachs, K., Staudigel, H., deWit, M. & Van Kranendonk, M. (2006). Ancient microbial alteration of oceanic crust on two early Archean Cratons and the search for extraterrestrial life. In Proc. Lunar and Planetary Science Conf., XXXVII (Abstract 2156). Lunar and Planetary Institute, Houston.Google Scholar
Banerjee, N.R., Muehlenbachs, K., Furnes, H., Staudigel, H. & de Wit, M. (2004b). Potential for early life hosted in basaltic glass on a wet Mars. In Proc. Second Conf. on Early Mars, Jackson Hole, WY, 11–15 October (Abstract 8048). Lunar Planetary Institute, Houston.Google Scholar
Chapman, M.G. (1994). Evidence, age, and thickness of a frozen paleolake in Utopia Planitia, Mars. Icarus 109, 393406.Google Scholar
Chapman, M.G. & Smellie, J.L. (2007). Mars interior layered deposits and terrestrial sub-ice volcanoes compared: observations and interpretations of similar geomorphic characteristics. The Geology of Mars, ed. Chapman, M.G., pp. 178210. Cambridge University Press, Cambridge.Google Scholar
Chapman, M.G. & Tanaka, K.L. (2001). Interior trough deposits on Mars: Subice volcanoes? J. Geophy. Res. 106, 10 08710 100.CrossRefGoogle Scholar
Edwards, H.G.M., Russell, N.C. & Wynn-Williams, D.D. (1997). Fourier Transform Raman spectroscopic and scanning electron microscopic study of cryptoendolithic lichens from Antarctica. J. Raman Spectros. 28, 685690.3.0.CO;2-X>CrossRefGoogle Scholar
Fisk, M.R. & Giovannoni, S.J. (1999a). Microbial weathering of igneous rocks: a tool for locating past life on Mars [abstract 199]. In 30th Lunar and Planetary Science Conf. Abstracts (LPI Contribution No. 964), pp. 1903. Lunar and Planetary Institute, Houston.Google Scholar
Fisk, M.R. & Giovannoni, S.J. (1999b). Sources of nutrients and energy for a deep biosphere on Mars. J. Geophy. Res. 104, 11 80511 815.Google Scholar
Fisk, M.R., Giovannoni, S.J. & Thorseth, I.H. (1998). Alteration of oceanic volcanic glass: textural evidence of microbial activity. Science 281, 978979.CrossRefGoogle ScholarPubMed
Fisk, M.R., Popa, R., Mason, O.U., Storrie-Lombardi, M.C. & Vicenzi, E.P. (2006). Iron-magnesium silicate bioweathering on earth (and Mars?). Astrobiology 6(1), 4868.CrossRefGoogle ScholarPubMed
Fisk, M.R., Storrie-Lombardi, M.C., Douglas, S., Popa, R., McDonald, G. & Di Meo-Savoie, C. (2003). Evidence of biological activity in Hawaiian subsurface basalts. Geochem. Geophys. Geosyst. 4, 2003GC000387.Google Scholar
Friedmann, E.I. (1982). Endolithic microorganisms in the Antarctic cold desert. Science 215, 10451053.Google Scholar
Furnes, H., Banerjee, N.R., Muehlenbachs, K. & Kontinen, A. (2005). Preservation of biosignatures in the metaglassy volcanic rocks from the Jormua ophiolite complex, Finland. Precambrian Res. 136(2), 125137.Google Scholar
Furnes, H., Banerjee, N.R., Muehlenbachs, K., Staudigel, H. & de Wit, M. (2004). Early life recorded in Archaean pillow lavas. Science 304, 578581.CrossRefGoogle Scholar
Furnes, H., Banerjee, N.R., Staudigel, H., Muehlenbachs, K., McLoughlin, N., de Wit, M. & Van Kranendonk, M.V. (2007). Comparing petrographic signatures of bioalteration in recent to Mesoarchean pillow lavas: tracing subsurface life in oceanic igneous rocks. Precambrian Res. 158, 156176.CrossRefGoogle Scholar
Furnes, H., Muehlenbachs, K., Torsvik, T., Tumyr, O. & Shi, L. (2002a). Bio-signatures in metabasaltic glass of a Caledonian ophiolite West Norway. Geol. Mag. 139(6), 601608.Google Scholar
Furnes, H., Muehlenbachs, K., Tumyr, O., Torsvik, T. & Xenophontos, C. (2001a). Biogenic alteration of volcanic glass from the Troodos ophiolite, Cyprus. J. Geol. Soc. Lond. 158(1), 7584.Google Scholar
Furnes, H. & Staudigel, H. (1999). Biological mediation in ocean crust alteration: how deep is the deep biosphere? Earth Planet. Sci. Lett. 166(3–4), 97103.Google Scholar
Furnes, H., Staudigel, H., Thorseth, I.H., Torsvik, T., Muehlenbachs, K. & Tumyr, O. (2001b). Bioalteration of basaltic glass in the oceanic crust. Geochem. Geophys. Geosyst. 2, 2000GC000150.Google Scholar
Furnes, H., Thorseth, I.H., Torsvik, T., Muehlenbachs, K., Staudigel, H. & Tumyr, O. (2002b). Identifying bio-interaction with basaltic glass in oceanic crust and implications for estimating the depth of the oceanic biosphere: a review. Special Publication 202: Volcano–Ice Interactions on Earth and Mars, eds Smellie, J.L. & Chapman, M.G., pp. 407421. Geological Society of London, London.Google Scholar
Furnes, H., Thorseth, I.H., Tumyr, O., Torsvik, T. & Fisk, M.R. (1996). Microbial activity in the alteration of glass from pillow lavas from Hole 896A. In Proc. Ocean Drilling Program, Scientific Results 148, eds Alt, J.C., Kinoshita, H., Stokking, L.B. & Michael, J.P., pp. 191206. Ocean Drilling Program, College Station, TX.CrossRefGoogle Scholar
Ghatan, G.J. & Head, J.W. III, (2002). Candidate subglacial volcanoes in the south polar region of Mars: morphology, morphometry, and eruption conditions. J. Geophy. Res. 107 (E7), 5048, DOI:10.1029/2001JE001519.Google Scholar
Giovannoni, S.J., Fisk, M.R., Mullins, T.D. & Furnes, H. (1996). Genetic evidence for endolithic microbial life colonizing basaltic glass/seawater interfaces. In Proc. of the Ocean Drilling Program, Sci. Results 148, eds Alt, J.C., Kinoshita, H., Stokking, L.B. & Michael, P.J., pp. 207214. Ocean Drilling Program, College Station, TX.Google Scholar
Golubic, S., Friedmann, I. & Schneider, J. (1981). The lithobiontic ecological niche, with special reference to microorganisms. J. Sediment. Petrol. 51(2), 475478.Google Scholar
Head, J.W. III, & Wilson, L. (2002). Mars: a review and synthesis of general environments and geological settings of magma-H2O interactions. In Volcano—Ice Interaction on Earth and Mars (Special Publications, 202), eds Smellie, J.L. & Chapman, M.G., pp. 2757. Geological Society, London.Google Scholar
Johnson, J.S. & Smellie, J.L. (2007). Zeolite compositions as proxies for eruptive paleoenvironment. Geochem. Geophys. Geosyst. 8, doi:10.1029/2006GC001450.Google Scholar
Jones, J.G. (1969). Intraglacial volcanoes of the Laugarvatn region, south-west Iceland – I. Q. J. Geol. Soc. Lond. 124, 197211.Google Scholar
McLoughlin, N., Brasier, M.D., Wacey, D., Green, O.R. & Perry, R.S. (2007). On biogenicity criteria for endolithic microborings on early Earth and beyond. Astrobiology 7(1), 1026.Google Scholar
Nelson, P.H.H. (1975). The James Ross Island volcanic group of north-east Graham Land, Br. Antarct. Surv. Sci. Rep. 54, 62.Google Scholar
Omelon, C.R., Pollard, W.H. & Ferris, F.G. (2007). Inorganic species distribution and microbial diversity within high Arctic cryptoendolithic habitats. Microbial Ecology 54, 740752.Google Scholar
Poulet, F., Bibring, J.-P., Mustard, J.F., Gendrin, A., Mangold, N., Langevin, Y., Arvidson, R.E., Gondet, B., Gomez, C. & the Omega Team (2005). Phyllosilicates on Mars and implications for early Martian climate. Nature 438, 623627.CrossRefGoogle ScholarPubMed
Ross, K.A. & Fisher, R.V. (1986). Biogenic grooving on glass shards. Science 14, 571573.Google Scholar
Skilling, I.P. (2002). Basaltic pahoehoe lava-fed deltas: large-scale characteristics, clast generation, emplacement processes and environmental discrimination. In Volcano – Ice Interaction on Earth and Mars (Special Publications 202), eds Smellie, J.L. & Chapman, M.G., pp. 91114. Geological Society, London.Google Scholar
Smellie, J.L. (1999). Lithostratigraphy of Miocene-Recent, alkaline volcanic fields in the Antarctic Peninsula and eastern Ellsworth Land. Antarctic Science 11, 362378.Google Scholar
Smellie, J.L. (2006). The relative importance of supraglacial versus subglacial meltwater escape in basaltic subglacial tuya eruptions: an important unresolved conundrum. Earth-Science Reviews 74, 241268.Google Scholar
Smellie, J.L. (2007). Quaternary vulcanism: subglacial landforms. In Encyclopedia of Quaternary Sciences, ed. Elias, S.A., pp. 784798. Elsevier, Amsterdam.Google Scholar
Smellie, J.L., Haywood, A.M., Hillenbrand, C.-D., Lunt, D.J. & Valdes, P.J. (Submitted). Nature of the Antarctic Peninsula Ice Sheet during the Pliocene: geological evidence & modelling compared. Earth-Science Reviews.Google Scholar
Smellie, J.L., Johnson, J.S., McIntosh, W.C., Esser, R., Gudmundsson, M.T., Hambrey, M.J. & van Wyk de Vries, B. (2008). Six million years of glacial history recorded in the James Ross Island Volcanic Group, Antarctic Peninsula. Palaeogeogr., Palaeoclimatol., Palaeoecol. 260, 122148.Google Scholar
Smellie, J.L., McArthur, J.M., McIntosh, W.C. & Esser, R. (2006). Late Neogene interglacial events in the James Ross Island region, northern Antarctic Peninsula, dated by Ar/Ar and Sr-isotope stratigraphy. Palaeogeogr., Palaeoclimatol., Palaeoecol. 242, 169187.Google Scholar
Staudigel, H., Furnes, H., Banerjee, N.R., Dilek, Y. & Muehlenbachs, K. (2006). Microbes and volcanoes: a tale from the oceans, ophiolites, and greenstone belts. GSA Today 16, 410.Google Scholar
Staudigel, H. & Schmincke, H-U. (1984). The Pliocene Seamount Series of La Palma/Canary Islands. J. Geophy. Res. 89, 11 19511 215.Google Scholar
Storrie-Lombardi, M.C. & Fisk, M. (2004). Elemental abundance distributions in sub-oceanic basalt glass: evidence of biogenic alteration. Geochem. Geophys. Geosys. 5, 1–15. Q10005, doi:10.1029/2004GC000755.Google Scholar
Thorseth, I.H., Furnes, H. & Heldal, M. (1992). The importance of microbiological activity in the alteration of natural basaltic glass. Geochim. Cosmochim. Acta 56(2), 845850.Google Scholar
Thorseth, I.H., Furnes, H. & Tumyr, O. (1995). Textural and chemical effects of bacterial activity on basaltic glass: an experimental approach. Chem. Geol. 119(1–4), 139160.Google Scholar
Thorseth, I.H., Pederson, R.B. & Christie, D.D. (2003). Microbial alteration of 0–30 Ma seafloor and subseafloor basaltic glass from the Australian Antarctic Discord. Earth Planet. Sci. Lett. 215(1–2), 237247.Google Scholar
Thorseth, I.H., Torsvik, T., Torsvik, K., Daae, F.L., Pederson, R.B. & the Keldysh-98 Scientific Party (2001). Diversity of life in ocean floor basalt. Earth Planet. Sci. Lett. 194(1–2), 3137.Google Scholar
Torsvik, T., Furnes, H., Muehlenbachs, K., Thorseth, I.H. & Tumyr, O. (1998). Evidence for microbial activity at the glass–alteration interface in oceanic basalts. Earth Planet. Sci. Lett. 162(1–4), 165176.Google Scholar
Villar, S.E.J., Edwards, H.G.M., Wynn-Williams, D.D. & Worland, M.R. (2003). FT-Raman spectroscopic analysis of an Antarctic endolith. Int. J. Astrobiology 1, 349355.Google Scholar
Walton, A. W. (2008). Microtubules in basaltic glass from Hawaii Scientific Drilling Project #2 phase 1 core and Hilina slope, Hawaii: evidence of the occurrence and behaviour of endolithic microorganisms. Geobiology 6, 351364.Google Scholar