Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T01:42:10.620Z Has data issue: false hasContentIssue false

The AMINO experiment: methane photolysis under Solar VUV irradiation on the EXPOSE-R facility of the International Space Station

Published online by Cambridge University Press:  18 July 2014

Nathalie Carrasco*
Affiliation:
Université Versailles St-Quentin, UPMC University Paris 06, CNRS, LATMOS, 11 blvd d'Alembert, 78280 Guyancourt, France Institut Universitaire de France, 103 blv St-Michel, 75005 Paris, France
Hervé Cottin
Affiliation:
Laboratoire Interuniversitaire des Systèmes Atmosphériques, LISA, UMR CNRS 7583, Université Paris Est Créteil and Université Paris Diderot, Institut Pierre Simon Laplace, 61 Avenue du Général De Gaulle, 94010 Créteil Cedex, France
Mégane Cloix
Affiliation:
Laboratoire Interuniversitaire des Systèmes Atmosphériques, LISA, UMR CNRS 7583, Université Paris Est Créteil and Université Paris Diderot, Institut Pierre Simon Laplace, 61 Avenue du Général De Gaulle, 94010 Créteil Cedex, France
Murielle Jérome
Affiliation:
Laboratoire Interuniversitaire des Systèmes Atmosphériques, LISA, UMR CNRS 7583, Université Paris Est Créteil and Université Paris Diderot, Institut Pierre Simon Laplace, 61 Avenue du Général De Gaulle, 94010 Créteil Cedex, France
Yves Bénilan
Affiliation:
Laboratoire Interuniversitaire des Systèmes Atmosphériques, LISA, UMR CNRS 7583, Université Paris Est Créteil and Université Paris Diderot, Institut Pierre Simon Laplace, 61 Avenue du Général De Gaulle, 94010 Créteil Cedex, France
Patrice Coll
Affiliation:
Institut Universitaire de France, 103 blv St-Michel, 75005 Paris, France Laboratoire Interuniversitaire des Systèmes Atmosphériques, LISA, UMR CNRS 7583, Université Paris Est Créteil and Université Paris Diderot, Institut Pierre Simon Laplace, 61 Avenue du Général De Gaulle, 94010 Créteil Cedex, France
Marie-Claire Gazeau
Affiliation:
Laboratoire Interuniversitaire des Systèmes Atmosphériques, LISA, UMR CNRS 7583, Université Paris Est Créteil and Université Paris Diderot, Institut Pierre Simon Laplace, 61 Avenue du Général De Gaulle, 94010 Créteil Cedex, France
François Raulin
Affiliation:
Laboratoire Interuniversitaire des Systèmes Atmosphériques, LISA, UMR CNRS 7583, Université Paris Est Créteil and Université Paris Diderot, Institut Pierre Simon Laplace, 61 Avenue du Général De Gaulle, 94010 Créteil Cedex, France
Kafila Saiagh
Affiliation:
Laboratoire Interuniversitaire des Systèmes Atmosphériques, LISA, UMR CNRS 7583, Université Paris Est Créteil and Université Paris Diderot, Institut Pierre Simon Laplace, 61 Avenue du Général De Gaulle, 94010 Créteil Cedex, France
Didier Chaput
Affiliation:
Centre National d'Etudes Spatiales, Toulouse, France
Cyril Szopa
Affiliation:
Université Versailles St-Quentin, UPMC University Paris 06, CNRS, LATMOS, 11 blvd d'Alembert, 78280 Guyancourt, France

Abstract

The scientific aim of the present campaign is to study the whole chain of methane photo-degradation, as initiated by Solar vacuum-ultraviolet irradiation in Titan's atmosphere. For this purpose, the AMINO experiment on the EXPOSE-R mission has loaded closed cells for gas-phase photochemistry in space conditions. Two different gas mixtures have been exposed, named Titan 1 and Titan 2, involving both N2–CH4 gas mixtures, without and with CO2, respectively. CO2 is added as a source of reactive oxygen in the cells. The cell contents were analysed thanks to infrared absorption spectroscopy, gas chromatography and mass spectrometry. Methane consumption leads to the formation of saturated hydrocarbons, with no detectable influence of CO2. This successful campaign provides a first benchmark for characterizing the whole methane photochemical system in space conditions. A thin film of tholin-like compounds appears to form on the cell walls of the exposed cells.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bertrand, M., Chabin, A., Colas, C., Cadène, M., Chaput, D., Brack, A., Cottin, H. & Westall, F. (Submitted). The AMINO experiment: exposure of amino acids in the Expose-R experiment on the International Space Science and in laboratory. Int. J. Astrobiol.Google Scholar
Beuselinck, T. & Van Bavinchove, C. (2011). EXPOSE: Environmental history by calculation: EXPOSE-R Simulation Results. EXP-RP-020-RS, Issue A, Revision 1. REDSHIFT.Google Scholar
Chen, F.Z. & Wu, C.Y.R. (2004). Temperature-dependent photoabsorption cross sections in the VUV–UV region. I. Methane and ethane. J. Quant. Spectrosc. Radiat. Transf. 85, 195209.Google Scholar
Cottin, H. et al. (2008). Heterogeneous solid/gas chemistry of organic compounds related to comets, meteorites, Titan and Mars: in laboratory and in lower Earth orbit experiments. Adv. Space Res. 42, 20192035.Google Scholar
Cottin, H. et al. (2012). The PROCESS experiment: an astrochemistry laboratory for solid and gaseous organic samples in low-earth orbit. Astrobiology 12, 412425.CrossRefGoogle ScholarPubMed
Coustenis, A. et al. (2007). The composition of Titan's stratosphere from Cassini/CIRS mid-infrared spectra. Icarus 189, 3562.Google Scholar
Encrenaz, T. (2005). Neutral atmospheres of the giant planets: an overview of composition measurements. Space Sci. Rev. 116, 99119.Google Scholar
Fitch, W.L. & Sauter, A.D. (1983). Calculation of relative electron impact total ionization cross sections for organic molecules. Anal. Chem. 55, 832835.CrossRefGoogle Scholar
Flasar, F.M. et al. (2004). Exploring the Saturn system in the thermal infrared: the composite infrared spectrometer. Space Sci. Rev. 115, 169297.Google Scholar
Gans, B. et al. (2010). Determination of the absolute photoionization cross sections of CH3 and I produced from a pyrolysis source, by combined synchrotron and vacuum ultraviolet laser studies. J. Phys. Chem. A 114, 32373246.Google Scholar
Gans, B., Peng, Z., Carrasco, N., Gauyacq, D., Lebonnois, S. & Pernot, P. (2013). Impact of a new wavelength-dependent representation of methane photolysis branching ratios on the modeling of Titan's atmospheric photochemistry. Icarus 223, 330343.Google Scholar
Gautier, T., Carrasco, N., Mahjoub, A., Vinatier, S., Giuliani, A., Szopa, C., Anderson, C.M., Correia, J.-J., Dumas, P. & Cernogora, G. (2012). Mid- and far-infrared absorption spectroscopy of Titan's aerosols analogues. Icarus 221, 320327.Google Scholar
Guerlet, S., Fouchet, T., Bézard, B., Simon-Miller, A.A. & Michael Flasar, F. (2009). Vertical and meridional distribution of ethane, acetylene and propane in Saturn's stratosphere from CIRS/Cassini limb observations. Icarus 203, 214232.Google Scholar
Hwang, W., Kim, Y.K. & Rudd, M.E. (1996). New model for electron-impact ionization cross sections of molecules. J. Chem. Phys. 104, 29562966.Google Scholar
Jacquinet-Husson, N. et al. (2011). The 2009 edition of the GEISA spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 112, 23952445.CrossRefGoogle Scholar
Jiao, C.Q., Dejoseph, C.A. Jr. & Garscadden, A. (2007). Electron impact ionization and ion reactions in n-butane. J. Phys. D: Appl. Phys. 40, 409.Google Scholar
Khare, B.N., Sagan, C., Arakawa, E.T., Suits, F., Callcott, T.A. & Williams, M.W. (1984). Optical constants of organic tholins produced in a simulated Titanian atmosphere: from soft x-ray to microwave frequencies. Icarus 60, 127137.CrossRefGoogle Scholar
Mahjoub, A., Carrasco, N., Dahoo, P.-R., Gautier, T., Szopa, C. & Cernogora, G. (2012). Influence of methane concentration on the optical indices of Titan's aerosols analogues. Icarus 221, 670677.Google Scholar
Nishimura, H. & Tawara, H. (1994). Total electron impact ionization cross sections for simple hydrocarbon molecules. J. Phys. B: At. Mol. Opt. Phys. 27, 2063.Google Scholar
Peng, Z., Carrasco, N. & Pernot, P. (2014). Modeling of synchrotron-based laboratory simulations of Titan's ionospheric photochemistry. GeoResJ 1–2, 3353.CrossRefGoogle Scholar
Rabbow, E. et al. (2014). The astrobiological mission EXPOSE-R on board of the International Space Station. Int. J. Astrobiol., this issue.Google Scholar
Raulin, F. & Bruston, P. (1996). Photochemical growing of complex organics in planetary atmospheres. Adv. Space Res. 18, 4149.Google Scholar
Rebbert, R.E. & Ausloos, P. (1972). Photolysis of methane: quantum yield of C(1D) and CH. J. Photochem. 1, 171176.CrossRefGoogle Scholar
Romanzin, C., Bénilan, Y., Jolly, A. & Gazeau, M.C. (2008). Photolytic behaviour of methane at Lyman-α and 248 nm: studies in the frame of a simulation program of Titan's atmosphere (S.E.T.U.P.). Adv. Space Res. 42, 20362044.Google Scholar
Teanby, N.A. et al. (2007). Vertical profiles of HCN, HC3N, and C2H2 in Titan's atmosphere derived from Cassini/CIRS data. Icarus 186, 364384.Google Scholar
Thuillier, G., Floyd, L., Woods, T.N., Cebula, R., Hilsenrath, E., Hersé, M. & Labs, D. (2004). Solar irradiance reference spectra for two solar active levels. Adv. Space Res. 34, 256261.CrossRefGoogle Scholar
Trainer, M.G., Jimenez, J.L., Yung, Y.L., Toon, O.B. & Tolbert, M.A. (2012). Nitrogen incorporation in CH(4)-N(2) photochemical aerosol produced by far ultraviolet irradiation. Astrobiology 12, 315–26.Google Scholar
Venot, O., Fray, N., Bénilan, Y., Gazeau, M.-C., Hébrard, E., Larcher, G., Schwell, M., Dobrijevic, M. & Selsis, F. (2013). High-temperature measurements of VUV-absorption cross sections of CO2 and their application to exoplanets. Astron. Astrophys. 551, A131.Google Scholar
Vergne, J., Cottin, H., Silva, L.D., Brack, A., Chaput, D. & Maurel, M.-C. (submitted). The AMINO experiment: RNA stability under solar radiations on the EXPOSE-R facility of the International Space Station. Int. J. Astrobiol.Google Scholar
Vinatier, S. et al. (2010). Analysis of Cassini/CIRS limb spectra of Titan acquired during the nominal mission: I. Hydrocarbons, nitriles and CO2 vertical mixing ratio profiles. Icarus 205, 559570.CrossRefGoogle Scholar
Waite, J.H. Jr et al. (2005). Ion neutral mass spectrometer results from the first flyby of Titan. Science 308, 982986.Google Scholar
Yoshino, K., Esmond, J.R., Sun, Y., Parkinson, W.H., Ito, K. & Matsui, T. (1996). Absorption cross section measurements of carbon dioxide in the wavelength region 118.7–175.5 nm and the temperature dependence. J. Quant. Spectrosc. Radiat. Transf. 55, 5360.Google Scholar