Published online by Cambridge University Press: 12 April 2016
Today, we are beginning to probe the interior of stars through the new science of stellar seismology. Certain stars, ranging from our own Sun to white dwarfs, undergo natural vibrations that can be detected with sensitive time-series photometry and/or spectroscopy. Since the signal we seek is an unbroken time-series to allow determination of the vibration frequencies, data from a single-site is usually incapable of uniquely identifying the pulsation modes, no matter how large the telescope being used. In many cases, the observational goals can be achieved using small-ish telescopes in well-coordinated global networks. Here, I briefly describe the work of one such international network of observatories and scientists known as the Whole Earth Telescope (WET). With the WET, we have sounded out the interiors of a large number of nonradially pulsating stars. Over the past 14 years, WET has observed dozens of stars in 20 separate observing campaigns. Our team has wide span of interests, and has observed several other classes of objects such as delta Scuti stars, CV stars, pulsating sdB stars, and rapidly oscillating Ap stars.