Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T16:19:21.546Z Has data issue: false hasContentIssue false

Waves from the Shoemaker-Levy 9 impacts

Published online by Cambridge University Press:  02 August 2016

Andrew P. Ingersoll
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
Hiroo Kanamori
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Images of Jupiter taken by the Hubble Space Telescope (HST) reveal two concentric circular rings surrounding five of the impact sites from comet Shoemaker-Levy 9 (SL9). The rings are visible 1.0 to 2.5 hours after the impacts. The outer ring expands at a constant rate of 450 ms-1 . The inner ring expands at about half that speed. The rings appear to be waves. Other features (diffuse rings and crescent) further out appear to be debris thrown out by the impact. Sound waves (p-modes), internal gravity waves (g-modes), surface gravity waves (f-modes), and rotational waves (r-modes) all are excited by the impacts. Most of these waves do not match the slow speed, relatively large amplitude, and narrow width of the observed rings. Ingersoll and Kanamori have argued that internal gravity waves trapped in a stable layer within the putative water cloud are the only waves that can match the observations. If they are correct, and if moist convection in the water cloud is producing the stable layer, then the O/H ratio on Jupiter is roughly ten times that on the Sun.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

References

Achterberg, R. K. & Ingersoll, A. P. 1989 A normal-mode approach to jovian atmospheric dynamics. J. Atmos. Sci. 46, 24482462.Google Scholar
Allison, M. 1990 Planetary waves in Jupiter's equatorial atmosphere. Icarus 83, 282307.Google Scholar
Bjoraker, G. L., Larson, H. P. & Kunde, V. G. 1986 The gas composition of Jupiter derived from 5-µm airborne spectroscopic observations. Icarus 66, 579609.Google Scholar
Carlson, B. E., Lacis, A. A. & Rossow, W. B. 1992 The abundance and distribution of water vapor in the jovian troposphere as inferred from Voyager IRIS observations. Astrophys. J. 388, 648668.Google Scholar
Chapman, S. & Lindzen, R. S. 1970 Atmospheric Tides. Gordon and Breach Science Publishers.Google Scholar
Collins, M., McDonald, B. E., Kupperman, W. A. & Siegmann, W. L. 1995 Jovian acoustics and comet Shoemaker-Levy 9. J. Acoust. Soc. Amer. 97, 21472158.Google Scholar
Deming, D. 1994 Prospects for jovian seismological observations following the impact of comet Shoemaker-Levy 9. Geophys. Res. Lett. 21, 10951098.Google Scholar
Emanuel, K. A. 1994 Atmospheric Convection, Oxford University Press.Google Scholar
Gautier, D. & Owen, T. 1989 The composition of outer planet atmospheres. In Origin and Evolution of Planetary and Satellite Atmospheres (ed. Atreya, S. K., Pollack, J. B. & Matthews, M. S.), pp. 487512. University of Arizona Press.Google Scholar
Gill, A. E. 1982 Atmosphere-Ocean Dynamics, Academic Press.Google Scholar
Goldreich, P. & Kumar, P. 1990 Wave generation by turbulent convection. Astrophys. J. 363, 694704.Google Scholar
Gough, D. O. 1994 Seismic consequences of the Shoemaker-Levy impact. Mon. Not. R. Astron. Soc. 269, L17L20.Google Scholar
Greenspan, H. P. 1968 The Theory of Rotating Fluids, Cambridge University Press.Google Scholar
Guillot, T., Chabrier, G., Morel, P. & Gautier, D. 1994 Nonadiabatic models of Jupiter and Saturn. Icarus 112, 354357.Google Scholar
Hammel, H. B., Beebe, R. F., Ingersoll, A. P., Orton, G. S., Mills, J. R., Simon, A. A., Chodas, P., Clarke, J. T., De Jong, E., Dowling, T. E., Harrington, J., Huber, L. F., Karkoschka, E., Santori, C. M., Toigo, A., Yeomans, D. & West, R. A. 1995 HST imaging of atmospheric phenomena created by the impact of comet Shoemaker-Levy 9. Science 267, 12881296.Google Scholar
Harrington, J., Lebeau, R. P., Backes, K. A. & Dowling, T. E. 1994 Dynamic response of Jupiter's atmosphere to the impact of comet Shoemaker-Levy 9. Nature 368, 525527.Google Scholar
Hubbard, W. B. 1989 Structure and composition of giant planet interiors. In Origin and Evolution of Planetary and Satellite Atmospheres (ed. Atreya, S. K., Pollack, J. B. & Matthews, M. S.), pp. 539563. University of Arizona Press.Google Scholar
Hunten, D. M., Hoffmann, W. F. & Sprague, A. L. 1994 Jovian seismic waves and their detection. Oeophys. Res. Lett. 21, 10911094.Google Scholar
Ingersoll, A. P., Kanamori, H. & Dowling, T. E. 1994 Atmospheric gravity waves from the impact of comet Shoemaker-Levy 9 with Jupiter. Geophys. Res. Lett. 21, 10831086.Google Scholar
Ingersoll, A. P. & Kanamori, H. 1995 Waves from the collisions of comet Shoemaker-Levy 9 with Jupiter. Nature 374, 706708.CrossRefGoogle ScholarPubMed
Kanamori, H. 1993 Excitation of jovian normal modes by an impact source. Geophys. Res. Lett. 20, 29212924.Google Scholar
Lee, U. & Van Horn, H. M. 1994 Global oscillation amplitudes excited by the Jupiter-comet collision. Astrophys. J. 428, L41L44.Google Scholar
Lindal, G. F., Wood, G. E., Levy, G. S., Anderson, J. D., Sweetnam, D. N., Hotz, H. B., Buckles, B. J., Holmes, D. P., Doms, P. E., Eshleman, V. R., Tyler, G. L. & Croft, T. A. 1981 The atmosphere of Jupiter: An analysis of the Voyager radio occultation measurements. J. Geophys. Res. 86, 87218727.Google Scholar
Lindzen, R. S., Batten, E. S. & Kim, J. W. 1968 Oscillations in atmospheres with tops. Mon. Wea. Rev. 96, 133140.Google Scholar
Lognonné, P., Mosser, B. & Dahlen, F. A. 1994 Excitation of jovian seismic waves by the Shoemaker-Levy 9 cometary impact. Icarus 110, 180195.Google Scholar
Marley, M. S. 1994 Seismological consequences of the collision of comet Shoemaker-Levy/9 with Jupiter. Astrophys. J. 427, L63L66.Google Scholar
McGregor, P. J., Nicholson, P. D. & Allen, M. G. 1995 CASPIR observations of the collision of comet Shoemaker-Levy 9 with Jupiter. Icarus, in press.Google Scholar
Mosser, B., Galdemard, P., Jouan, R., Lagage, P., Masse, P., Pantin, E., Sauvage, M., Lognonné, P., Gautier, D., Drossart, P., Merlin, P., Sibille, F., Vauglin, I., Billebaud, F., Livengood, T., Käufi, H. U., Marley, M., Hultgren, M., Nordh, L., Olofsson, G., Ulla, A., Belmonte, J. A., Regulo, C., Roca-Cortez, C., Selby, M., Rodriguez-Espinosa, J. M. & Vidal, I. 1995 Seismic studies of Jupiter at the time of SL-9 impacts. In European SL-9/Jupiter Workshop, Garching, 13-15 February 1995 (eds. West, R. M. & Boehnhardt, H.), pp. 397402. European Southern Observatory Conference and Workshop Proceedings.Google Scholar
Palmén, E. & Newton, C. W. 1969 Atmospheric Circulation Systems, Academic Press.Google Scholar
Pankine, A. A. & Ingersoll, A. P. 1995 Ejecta patterns of the impacts of comet Shoemaker-Levy 9. Bull. Amer. Astron. Soc. 27, 76.Google Scholar
Riehl, H. & Malkus, J. S. 1958 On the heat balance in the equatorial trough zone. Geophysica (Helsinki) 6, 503537.Google Scholar
West, R. A., Karkoschka, E., Friedson, A. J., Seymour, M., Baines, K. H. & Hammel, H B. 1995 Impact debris particles in Jupiter's stratosphere. Science 267, 12961301.Google Scholar
Zahnle, K. 1995 Dynamics and chemistry of SL9 plumes. This volume.Google Scholar
Zel'Dovich, Ya. B. & Raizer, Yu. P. 1967 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Volume II, Academic Press.Google Scholar
Zhang, H. & Ingersoll, A. P. 1995 Rings in HST images of SL9 collision with Jupiter: Waves or advection? Bull. Amer. Astron. Soc. 27, 76.Google Scholar