Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T20:41:49.643Z Has data issue: false hasContentIssue false

Time-Resolved Spectroscopy of Accretion Disks in Algols

Published online by Cambridge University Press:  12 April 2016

Ronald H. Kaitchuck*
Affiliation:
Department of Astronomy,The Ohio State University,174 W. 18th Ave., Columbus,Ohio 43210,U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Time-resolved spectroscopy during the eclipse of short-period Algol systems, has shown their accretion disks to be small, turbulent structures with non-Keplerian velocity fields and asymmetries between the leading and trailing sides of the disk. These transient disks are produced by the impact of the gas stream on the mass-gaining star, and occur in systems where the star is just large enough to ensure the stream collision is complete. These emission line disks and the excess continuum emission do not always occur together. The permanent accretion disks in at least a few of the long-period Algol systems have features in common with the transient disks including non-Keplerian velocity fields.

Type
Research Article
Copyright
Copyright © Kluwer 1989

References

Baldwin, B. W. 1978, Ap.J., 226, 937.Google Scholar
Batten, A.H., 1973, Binary and Multiple Systems of Stars (New York: Pergamon).Google Scholar
Batten, A.H., 1988, Pub.A.S.P. 100, 160.Google Scholar
Crawford, R.C. 1981, Ph.D. Dissertation, University of California, Los Angeles.Google Scholar
Hall, D.S., Quarles, T., Roberts, J., Whelan, J.A.J. 1979, Acta Astr. 29, 653.Google Scholar
Joy, A.H. 1942, Pub.A.S.P. 54, 35.Google Scholar
Kaitchuck, R.H. 1988, Pub.A.S.P. 100, 594.Google Scholar
Kaitchuck, R.H., and Honeycutt, R.K. 1982a, Ap. J. 258, 224.Google Scholar
Kaitchuck, R.H., and Honeycutt, R.K. 1982b, Pub.A.S.P. 94, 532.Google Scholar
Kaitchuck, R. H., Honeycutt, R.K., and Faulkner, D.R. 1988, Ap.J., in press.Google Scholar
Kaitchuck, R.H., and Park, E.A. 1988, Ap.J. 325, 225.Google Scholar
Kaitchuck, R.H., Honeycutt, R.K., and Schlegel, E.M. 1985, Pub.A.S.P. 97, 1178.Google Scholar
Lubow, S.H., and Shu, F.H. 1975, Ap. J. 198, 383.Google Scholar
Olson, E.C. 1978, Ap. J. 220, 251.Google Scholar
Olson, E.C. 1980a, Ap. J. 237, 496.Google Scholar
Olson, E.C. 1980b, Ap. J. 241, 257.Google Scholar
Olson, E.C. 1982, Ap. J. 259, 702.Google Scholar
Peters, G. J. 1980 in Close Binary Stars: Observations and Interpretation, I.A.U. Symposium No. 88, Plavec, M.J., Popper, D. M., and Ulrich, R.K., eds. (Dordrecht: Reidel), p. 287.Google Scholar
Peters, G.J., and Polidan, R.S. 1984, Ap. J. 282, 745.Google Scholar
Plavec, M.J. 1968, Bull. Astr. Inst. Czechoslovakia, 19, 11.Google Scholar
Plavec, M.J. 1983, Ap.J., 275, 251.Google Scholar
Plavec, M.J., and Dobias, J.J. 1983, Ap. J. 272, 206.CrossRefGoogle Scholar
Plavec, M.J., and Dobias, J.J. 1987, A.J. 92, 440.CrossRefGoogle Scholar
Plavec, M.J., and Polidan, R.S. 1976, in Structure and Evolution of Close Binary Systems, I.A.U. Symposium No. 73, Plavec, M.J., Popper, D. M., and Ulrich, R. K., eds. (Dordrecht:Reidel), p. 289.Google Scholar
Pringle, J.E. 1981, Ann. Rev. Astron. Astrophy., 19, 137.Google Scholar
Smak, J. 1981, Acta Astron., 31, 25.Google Scholar
Struve, O. 1948, Pub.A.S.P. 60, 160.Google Scholar
Struve, O. 1949, M.N.R.A.S. 109, 487.Google Scholar
Struve, O., and Huang, S.-S. 1957, O.N.R.A.S., 3, 161 (No. 19).Google Scholar
Verbunt, F. 1982, Sp. Sci. Rev., 32, 379.Google Scholar
Van Hamme, W., and Wilson, R.E. 1986, A.J., 92, 1168.CrossRefGoogle Scholar
Wilson, R.E., and Plavec, M.J. 1988, A.J., 95, 1828.Google Scholar
Wyse, A.B. 1934, Lick Obs. Bull. No. 464, 17, 37.Google Scholar