Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T00:16:13.545Z Has data issue: false hasContentIssue false

Three Dimensional Stability of A Rectilinear Periodic Solution of the Three-Body Problem, for all Values of the Masses*

Published online by Cambridge University Press:  12 April 2016

M. Hénon*
Affiliation:
Observatoire de Nice

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider a rectilinear periodic solution in which the central body collides alternately with each of the two other bodies. This solution is found to exist for all values of the three masses. Its stability with respect to three-dimensional perturbations is computed. Domains of stability and instability are delimited in a triangular mass diagram. Large domains of stability are found. This reinforces the conclusion that triple stars may have an “interplay” type of motion.

Resumen

Resumen

Consideramos la solución rectilínea, periódica, en donde el cuerpo central choca alternativamente con cada uno de los otros dos cuerpos. Se encuentra que esta solución existe para todos los valores de las tres masas. Se calcula su estabilidad con respecto a perturbaciones tri-dimensionales. Se delimitan los dominios de estabilidad e inestabilidad en un diagrama triangular de masas. Se han encontrado grandes dominios de estabilidad. Esto refuerza la conclusion de que sistemas triples pueden tener un movimiento de tipo “interplay”.

Type
Session 5
Copyright
Copyright © Otto G. Franz and Paris Pismis 1977

Footnotes

*

To be published in Celestial Mechanics.

References

* To be published in Celestial Mechanics.