Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T10:44:00.037Z Has data issue: false hasContentIssue false

Thermonuclear Runaway Model

Published online by Cambridge University Press:  12 April 2016

Warren M. Sparks
Affiliation:
Los Alamos National Laboratory
G. Siegfried Kutter
Affiliation:
National Science Foundation
Sumner Starrfield
Affiliation:
Arizona State Universityand Los Alamos National Laboratory
James W. Truran
Affiliation:
University of Illinois

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The nova outburst requires an energy source that is energetic enough to eject material and is able to recur. The Thermonuclear Runaway (TNR) model, coupled with the binary nature of nova systems, satisfies these conditions. The white dwarf/red dwarf binary nature of novae was first recognized as a necessary condition by Kraft (1963,1964, and these conference proceedings). The small separation characteristic of novae systems allows the cool, red secondary to overflow its Roche lobe. In the absence of strong, funneling magnetic fields, the angular momentum of this material prevents it from falling directly onto the primary, and it first forms a disk around the white dwarf. This material is eventually accreted from the disk onto the white dwarf. As the thickness of this hydrogen-rich layer increases, the degenerate matter at the base reaches a temperature that is high enough to initiate thermonuclear fusion of hydrogen. Thermonuclear energy release increases the temperature which in turn increases the energy generation rate. Because the material is degenerate, the pressure does not increase with temperature, which normally allows a star to adjust itself to a steady nuclear burning rate. Thus the temperature and nuclear energy generation increase and a TNR results. When the temperature reaches the Fermi temperature, degeneracy is lifted and the rapid pressure increase causes material expansion. The hydrogen-rich material either is ejected or consumed by nuclear burning, and the white dwarf returns to its pre-outburst state. The external source of hydrogen fuel from the secondary allows the whole process to repeat.

Type
3. Theory
Copyright
Copyright © Springer-Verlag 1990

References

Caughlan, G.R., and Fowler, W.A. 1962, Ap. J., 136, 453.CrossRefGoogle Scholar
Caughlan, G.R. Fowler, W.A. 1972 Nature Phys. Sci., 238, 23.Google Scholar
Fujimoto, M.Y. 1982a, Ap. J., 257, 752.Google Scholar
Fujimoto, M.Y. 1982b, Ap. J., 257, 767.Google Scholar
Giannone, P., and Weigert, A. 1967, Zs.f. Ap., 67, 41.Google Scholar
Hoffman, R., and Woosley, S.E. 1986, BAAS, 18, 948.Google Scholar
Kippenhahn, R., and Thomas, H.-C. 1978, Astr. Ap., 63, 265.Google Scholar
Kovetz, A., and Prialnik, D. 1985, Ap. J., 291, 812.Google Scholar
Kraft, R.P. 1963, Adv. Astr. and Ap., 2, 43.Google Scholar
Kraft, R.P.1964 Ap. J. 139 457.CrossRefGoogle Scholar
Kutter, G.S., and Sparks, W.M. 1974, Ap. J., 192, 447.Google Scholar
Kutter, G.S., and Sparks, W.M. 1980, Ap. J., 239, 988.Google Scholar
Kutter, G.S., and Sparks, W.M. 1987, Ap. J., 321, 386.Google Scholar
Kutter, G.S., and Sparks, W.M. 1989, Ap. J., 340, 985.CrossRefGoogle Scholar
Leising, M.D., and Clayton, D.D. 1987, Ap. J., 323, 159.Google Scholar
Livio, M., Prialnik, D., and Regev, O. 1989, Ap. J., 341, 299.Google Scholar
Livio, M., and Truran, J.W. 1987, Ap. J., 318, 316.Google Scholar
MacDonald, J. 1979, Ph.D. Thesis, University of Cambridge.Google Scholar
MacDonald, J. 1980, M.N.R.A.S., 191, 933.CrossRefGoogle Scholar
Nariai, K., Nomoto, K., and Sugimoto, D. 1980, P.A.S.J., 32, 473.Google Scholar
Patterson, J. 1984, Ap. J. Suppl., 54, 443.Google Scholar
Prialnik, D., and Kovetz, A. 1984, Ap. J., 281, 367.Google Scholar
Prialnik, D., Livio, M., Shaviv, G., and Kovetz, A. 1982, Ap. J., 257, 312.Google Scholar
Prialnik, D., and Shara, M.M. 1986, Ap. J., 311, 172.Google Scholar
Prialnik, D., Shara, M.M., and Shaviv, G. 1978. Astr. Ap., 62, 339.Google Scholar
Regev, O., and Shara, M.M. 1989, Ap. J., 340, 1006.Google Scholar
Shara, M.M., Livio, M., Moffat, A.F.J., and Orio, M. 1986, Ap. J., 311, 163.CrossRefGoogle Scholar
Shaviv, G., and Starrfield, S. 1987, Ap. J. (Letters), 321, L51.Google Scholar
Sneden, C., and Lambert, D.L. 1975, M.N.R.A.S., 170, 533.Google Scholar
Sparks, W.S., and Kutter, G.S. 1987, Ap. J., 321, 394.Google Scholar
Sparks, W.S., Starrfield, S., and Truran, J.W. 1976, Ap. J., 208, 819.Google Scholar
Sparks, W.S., Starrfield, S., and Truran, J.W. 1978, Ap. J., 220, 1063.Google Scholar
Sparks, W.S., Starrfield, S.G., Truran, J.W., and Kutter, G.S. 1988, in Atmospheric Diagnostics of Stellar Evolution: Chemical Peculiarity. Mass Loss, and Explosion, ed. Nomoto, K. (Berlin:Springer-Verlag), p. 234.Google Scholar
Starrfield, S., Sparks, W.M., and Truran, J.W. 1985, Ap. J., 291, 136.Google Scholar
Starrfield, S., Truran, J., and Sparks, W.M. 1977, in CNO Isotopes in Astrophysics, ed. Audouze, J.(Dordrecht: Reidel), p. 49.CrossRefGoogle Scholar
Starrfield, S., Truran, J., and Sparks, W.M. 1978. Ap. J., 226, 186.Google Scholar
Starrfield, S., Truran, J.W., Sparks, W.M., and Kutter, G.S. 1972, Ap. J., 176, 169.Google Scholar
Taam, R., and Faulkner, J. 1975, Ap. J., 198, 435.Google Scholar
Truran, J.W., and Livio, M. 1986, Ap. J., 308, 721.Google Scholar
Truran, J.W., Starrfield, S., and Sparks, W.M. 1978, in Gamma Ray Spectroscopy in Astrophysics.ed. Cline, T.L. and Ramaty, R., (NASA Technical Memorandum 79619), p. 315.Google Scholar
Woosley, S.E. 1986, in Sixteenth Advanced Course of the Swiss Society of Astronomy and Astrophysics, ed. Hauck, B., Maeder, A., and Meynel, G. (Geneva: Geneva Observatory), p. 1.Google Scholar