No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
Knowledge of the size and age of the Universe depends on understanding supernovae. The direct geometric measurement of the circumstellar ring of SN 1987A using IUE spectra and HST images provides an independent test of the Cepheid distance scale to the Large Magellanic Cloud. Understanding the details of the mass distribution in the circumstellar matter is important to improving the precision of this distance. Type la supernovae have a narrow distribution in absolute magnitude, and new Cepheid distances to IC 4182 (the site of SN 1937C) and to NGC 5253 (the site of SN 1972E) obtained with HST by Sandage and his collaborators allow that absolute magnitude to be calibrated. Comparison with more distant SNIa gives H0 = 56 ± 8 km s-1 Mpc-1. Recent work in supernova spectroscopy and photometry shows that the apparent homogeneity of SNIa is not quite what it seems, and a deeper understanding of these variations is needed to use the SNIa to best advantage. The Expanding Photosphere Method (EPM) allows direct measurement to each Type II supernova that has adequate photometry and spectroscopy. There are now 18 such objects. The sample of EPM distances from 4.5 Mpc to 180 Mpc indicates H0 = 73±6 (statistical) ±7 (systematic) km s-1 Mpc-1. Better understanding of supernova atmospheres can reduce the systematic error in this approach, which is completely independent of all other astronomical distances.