Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T16:40:24.634Z Has data issue: false hasContentIssue false

Summary on Orientations of Rotation Axes

Published online by Cambridge University Press:  12 April 2016

Carl D. Vesely*
Affiliation:
University of Arizona

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To evaluate the precision of the previously determined coordinates of the rotation axes (table I) we should review the methods (originally developed for 433 Eros) and logic of the various authors. Table II contains pole coordinates of Eros and the sources of these data. A critical summary of the work will enable us to make some conclusions concerning the poles presented.

There is general agreement that greatest rotational amplitude is observed when an asteroid is viewed equatorially, and we can detect three approaches to the determination of the Eros pole: the micrometer position angles observed by van den Bos and Finsen (1931); the graphic presentations used by Watson (1937), Stobbe (1940), and Rosenhagen (1932); and the mathematical model developed by Krug and Schrutka-Rechtenstamm (1936). These initial attempts yielded only approximate values, but the approximations were sometimes refined by analytical methods.

Type
Part I-Observations
Copyright
Copyright © NASA 1971

References

Beyer, M. 1953, Der Lichtwechsel und die Lage dei Rotationsachse des Planeten 433 Eros während der Opposition 1951–52. Astron. Nachr. 281, 121130.Google Scholar
Bos, van den, W.H. and Finsen, W.S. 1931, Physical Observations of Eros. Astion. Nachr. 241, 329334.Google Scholar
Cailliatte, C. 1956, Contribution à l’Étude des Astéroïdes Variables. Bull. Astron. Paris 20, 283341.Google Scholar
Cailliatte, C. 1960, Contribution à l’Étude des Astéroïdes Variables (Suite). Pubi. Observ. Lyon 6(1), pp. 259272.Google Scholar
Chang, Y.C., and Chang, C.S. 1962, Photometric Investigations of Seven Variable Asteroids. Acta Astron. Sinica 10, 101111.Google Scholar
Chang, Y.C., and Chang, C.S. 1963, Photometric Observations of Variable Asteroids. Acta Astron. Sinica 11, 139149.Google Scholar
Dunlap, J.L., and Gehrels, T. 1969, Lightcurves of a Trojan Asteroid. Astron. J. 74, 796803.Google Scholar
Dunlap, J.L., and Gehrels, T. 1971, Minor Planets and Related Objects. VIII. Astron. J. 76, in press.Google Scholar
Gehrels, T. 1967, The Rotation of Vesta. Astron. J. 72, 929938.Google Scholar
Gehrels, T., and Owings, D. 1962, Photometric Studies of Asteroids. IX. Additional Light-Curves. Astrophys. J. 135, 906924.Google Scholar
Gehrels, T., Roemer, E., Taylor, R.C., and Zellner, B.H. 1970, Asteroid (1566) Icarus. Astron. J. 75, 186195.Google Scholar
Huruhata, M. 1940, The Rotation Period of Eros. Harvard Col. Observ. Circ. 442, pp. 16.Google Scholar
Krug, W., and Schrutka-Rechtenstamm, G. 1936, Untersuchungen über Gestalt und Grösse des Planetoiden Eros. Z. Astrophys. 13, 112.Google Scholar
Roach, F.E., and Stoddard, L.G. 1938, A Photoelectric Light-Curve of Eros. Astrophys. J. 88, 305312.CrossRefGoogle Scholar
Rosenhagen, J. 1932, Einige Bemerkungen zur Helligkeit und zum Lichtwechsel des Planeten Eros. Mitt. Wien. Sternw. 1(2), 4552.Google Scholar
Sather, R.E., and Taylor, R.C. 1972, Minor Planets and Related Objects. IX. Astron. J., in preparation.Google Scholar
Stobbe, J. 1940, Der Lichtwechsel des Eros. Astron. Nachr. 270, 124.Google Scholar
Tempesti, P., and Burchi, R. 1969, A Photometric Research on the Minor Planet 12 Victoria. Mem. Soc. Astron. Ital. 40, 415432.Google Scholar
Watson, F. 1937, The Physical Nature of Eros. Harvard Col. Observ. Circ. 419, pp. 114.Google Scholar
Zessewitsche, W. 1932, Die Bestimmung der Winkelelemente der inneren Bewegung von Eros. Astron. Nachr. 246, 441450.Google Scholar
Zessewitsche, W. 1937, On the Rotation of Eros. Observatory 60, 289292.Google Scholar