No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
A review is given of rate of mass-loss values in the upper part of the Hertzsprung-Russell diagram. Near the luminosity limit of stellar existance = −10−4 M⊙ yr−1. Episodical mass loss in bright variable super- and hypergiants does not significantly increase this value. For Wolf-Rayet stars the rate of mass loss is larger by a factor 140 than for non-evolved stars with the same Teff and L; for C stars this factor is ten. This can be explained qualitatively. Rotation appears hardly to influence the rate of mass loss except for vrot-values close to the break-up velocity. This is in accordance with theory. We suggest the existence of a Red Supergiant Branch; along that branch mass loss is virtually independent of luminosity. Stellar winds along the upper limit of stellar existence are mainly due: to radiation pressure for hot supergiants (≳ 10 000 K); to turbulent pressure for cool supergiants (3000-10 000 K), and to dust-driven and pulsation-driven winds for cooler stars. The turbulent pressure may originate in largescale stochastic motions as observed in Alpha Cyg. Episodical mass loss, as observed in P Cyg, HR 8752 and other Very Luminous Variables may be due to occasional violent stochastic motions, resulting in a shock-driven episodical mass-loss component.