Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T16:02:41.078Z Has data issue: false hasContentIssue false

Stellar Chromospheric Models

Published online by Cambridge University Press:  06 September 2019

Eugene H. Avrett*
Affiliation:
Smithsonian Institution, Astrophysical Observatory

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In “Types of Theoretical Models” we describe two basic types of theoretical models — radiative equilibrium and empirical — that are used to represent stellar chromospheres. The next Section is a summary of recent work on the construction of radiative-equilibrium model atmospheres that show an outward temperature increase in the surface layers. Also, we discuss the chromospheric cooling due to spectral lines. In “Solar Empirical Models” we describe the empirical determination of solar-type chromospheric models that, in order to match observations, imply a temperature rise substantially greater than that predicted by radiative equilibrium. Such a temperature rise must be largely due to mechanical heating. An attempt is made in the concluding Section to apply a scaled solar chromospheric model to a star with a different surface gravity. The results suggest that the chromospheric optical thickness is sensitive to gravity and that the width of chromospheric line emission increases with stellar luminosity, in qualitative agreement with the width-luminosity relationship observed by Wilson and Bappu.

Type
Part I: Spectroscopic Diagnostics of Chromospheres and the Chromospheric Energy Balance
Copyright
Copyright © Nasa 1972

References

Athay, R.G. 1966, Astrophys. J., 146, 223.Google Scholar
Athay, R.G. 1969, Solar Phys., 9, 51.Google Scholar
Athay, R.G. 1970, Astrophys. J., 161, 713.Google Scholar
Athay, R.G., Skumanich, A. 1969, Astrophys. J., 155, 273.Google Scholar
Auer, L.H., Mihalas, D. 1969a, Astrophys. J., 156, 157.Google Scholar
Auer, L.H., Mihalas, D. 1969b, Astrophys. J., 156, 681.Google Scholar
Auer, L.H., Mihalas, D. 1970, Astrophys. J., 160, 233.Google Scholar
Auer, L.H. Mihalas, D. 1973, Astrophys. J. Suppl, 24, 193.Google Scholar
Baker, J.G., Menzel, D.H., Aller, L.H. 1938, Astrophys. J., 88, 422.Google Scholar
Cayrel, R., 1963, Comptes Rendus, 257, 3309.Google Scholar
Dubov, E.E., 1965, Soviet Astron. - A.J., 9, 782.Google Scholar
Feautrier, P. 1968, Ann. D'Astrophys., 31, 257.Google Scholar
Frisch, H. 1966, J. Quant Spectrosc. Radiat. Transfer, 6, 629.Google Scholar
Gebbie, K.B., Thomas, R.N. 1970, Astrophys. J., 161, 229.Google Scholar
Gebbie, K.B., Thomas, R.N. 1971, Astrophys. J., 168, 461.Google Scholar
Gingerich, O., Noyes, R.W., Kalkofen, W., Cuny, Y. 1971, Solar Phys., 18, 347.Google Scholar
Griffin, R.F 1968, A Photometric Atlas of the Spectrum of Arcturus, Cambridge Philosophical Society, Cambridge, England.Google Scholar
Jordan, S.D. 1969, Astrophys. J., 157, 465.Google Scholar
Kurucz, R.L., Peytremann, E., Avrett, E.H. 1973, Line Blanketed Model Atmospheres for Early Type Stars, U.S. Govt. Printing Office (in press)Google Scholar
Liller, W. 1968, Astrophys. J., 151, 589.Google Scholar
Linsky, J.L. 1970, Solar Phys., 11, 355.Google Scholar
Linsky, J.L., Avrett, E.H. 1970, Publ. Astron. Soc. Pacific, 82, 169.Google Scholar
Noyes, R.W., Kalkofen, W. 1970, Solar Phys., 15, 120.Google Scholar
Skumanich, A. 1970, Astrophys. J., 159, 1077.Google Scholar
Vernazza, J.E., Avrett, E.H., Loeser, R. 1973, submitted to Astrophys. J. Google Scholar
White, O.R., Suemoto, Z. 1968, Solar Phys., 3, 523.Google Scholar
Wilson, O.C., Bappu, M.K.V 1957, Astrophys. J., 125, 661.Google Scholar