Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T04:33:22.658Z Has data issue: false hasContentIssue false

Solar Forcing of Global Climate Change

Published online by Cambridge University Press:  12 April 2016

Paul E. Damon
Affiliation:
Department of Geosciences, University of Arizona, Tucson, AZ 87521, USA
John L. Jirikowic
Affiliation:
Department of Geosciences, University of Arizona, Tucson, AZ 87521, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using present global warming and paleoclimatic records from climatically sensitive regions as a frame of reference, we infer that global temperature changes did not exceed ±0.5°C during the current interglacial or ±2.0°C during the last glacial period. In order to completely explain such fluctuations by solar irradiance changes, all solar and terrestrial factors must be optimized. Since this is unlikely, we conclude that solar forcing of pre-anthropogenic climate change is a significant and perhaps dominant factor but other processes must also be significant. Solar irradiance changes alone cannot result in the temperature decrease required to change from interglacial to glacial as suggested by Opik (1965).

Type
The Response of the Earth’s Atmosphere to Solar Irradiance Variations and Sun-Climate Connections
Copyright
Copyright © Kluwer 1994

References

Baliunas, S. & Jastrow, R. 1990 Evidence for long-term brightness changes of solar-type stars. Nature 348, 520523.Google Scholar
Barron, E.J. & Washington, W.M. 1984 The role of geographic variables in explaining paleoclimate results from Cretaceous climate model sensitivity studies. J. Geophys. Res. 89, 12671279.Google Scholar
Beltrami, H., Jessup, A.M. & Mareschal, J.-C. 1992 Ground temperature histories in eastern and central Canada from geothermal measurements: evidence for climate change. Paleogeogr., Paleoclimatol., Paleoecol. (Global Planetary Section) 98, 167184.Google Scholar
Boden, T.A., Sepanski, R.J. & Stoss, F.W. (eds.) 1991 Trends ‘91: A Compendium of Data on Global Change. Pub. No. ORNL/CDIAC-46, ESD Pub. No. 3746, Carbon Dioxide Information Center, Oak Ridge, TN, pp. 665.Google Scholar
Bradley, R.S. 1985 Quaternary Paleoclimatology: Methods of Paleoclimate Reconstruction. Allen and Unwin, Boston, USA. pp. 472.Google Scholar
Cook, E., Bird, T., Barbetti, M., Buckley, B., D’Arrigo, R. & Francey, R. 1992 Climatic change over the last millennium in Tasmania reconstructed from tree-rings. The Eolocene 2, 205217.Google Scholar
Crowley, T.J. & North, G.R. 1991 Paleoclimatology. Oxford Univ. Press, New York, pp. 339.Google Scholar
Damon, P.E. & Jirikowic, J.L. 1992a The Sun as a low-frequency harmonic oscillator. Radiocarbon 34, 199205.Google Scholar
Damon, P.E. & Jirikowic, J.L. 1992b Radiocarbon evidence for low frequency solar oscillations. In Rare Nuclear Processes (ed. Povinec, P.). pp. 177202. Proceedings of the 14th Europhysics Conference on Nuclear Physics, World Scientific Publishers, Singapore.Google Scholar
Damon, P.E. & Sonett, C.P. 1991 Solar and terrestrial components of the atmospheric 14C variation spectrum. In The Sun in Time (ed. Sonett, C.P., Giampapa, M.S. & Matthews, M.S.), pp. 361388. Univ. of Arizona Press, Tucson, AZ, USA.Google Scholar
Dansgaard, W. 1964 Stable isotopes in precipitation. Tellus 16, 436468.CrossRefGoogle Scholar
Dansgaard, W., Clausen, H.B., Gundestrup, N., Hammer, C.U., Johnsen, S.J., Kristensdottir, P.M. & Reeh, H. 1982 A new Greenland ice core. Science 218, 12731277.Google Scholar
Eddy, J.A. 1977 Climate and the changing Sun. Climatic Change 1, 173190.Google Scholar
Epstein, S. 1959 The variations of the 18O/16O ratio in nature and some geologic implications. In Researches in Geochemistry (ed. Abelson, P.H.). pp. 217 240. John Wiley and Sons, New York, USA.Google Scholar
Fairbanks, R.G. 1989 A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637642.Google Scholar
Folland, F.P., Karl, T. & Barnett, T.P. 1990 Observed climate variations and change. In Climate Change (The IPCC Scientific Assessment) (ed. Houghton, J.T., Jenkins, G.J. & Ephraums, J.S.). pp. 195238. Cambridge Univ. Press.Google Scholar
Graybill, D.A. & Shiyatov, S.G. 1992 Dendroclimatic evidence from the northern Soviet Union. In Climate Change since a.d. 1500 (ed. Bradley, R.S. & Jones, P.D.), pp. 393414. Routledge, London.Google Scholar
Grootes, P.M., Stuiver, M. & White, J.M.C. 1983 A long isotopie record at the Greenland Summit. EOS 74(43), 78 (abstract).Google Scholar
Hansen, J.E. & Lacis, A.A. 1990 Sun and dust versus greenhouse gases: an assessment of the relative roles in global climate change. Nature 346, 713719.Google Scholar
Hansen, J., Lacis, A., Rind, D., Russell, G., Stone, P., Fung, I., Ruedy, R. & Lerner, J. 1984 Climate sensitivity: analysis of feedback mechanisms. In Climate Processes and Climate Sensitivity (ed. Hansen, J.E. & Takahashi, T.). pp. 130163. Geophys. Monograph 29, Maurice Ewing, 5, Amer. Geophys. Union, Washington, D.C., USA.Google Scholar
Hanson, K., Maul, G.A. & Karl, T.R. 1989 Are atmospheric “greenhouse” effects apparent in the climate record of the contiguous U.S. (1895-1987)? Geophys. Res. Lett. 16, 4952.Google Scholar
Hasenrath, S. & Kruss, P.D. 1992 Greenhouse indicators in Kenya. Nature 355, 503504.Google Scholar
Innes, J.L. 1992 High-altitude and high-latitude tree growth in relation to past, present and future global climate change. The Holocene 1, 168173.Google Scholar
Jacoby, G.C. & D’Arrigo, R. 1989 Reconstructed Northern Hemisphere annual temperature since 1671 based on high-latitude tree-rings from North America. Climatic Change 14, 3959.Google Scholar
Jirikowic, J.L. & Damon, P.E. 1994 The medieval solar activity maximum. Climatic Change, in press.Google Scholar
Johnsen, S.J., Dansgaard, W., Clausen, H.B. & Langway, C.C. Jr. 1972 Oxygen isotope profiles through the Antarctic and Greenland ice sheets. Nature 235, 429434.Google Scholar
Kakuta, S. 1992 Surface-temperature history during the last 1000 years near Prudhoe Bay: applying control theory to the inversion of borehole temperature profiles. Paleogeogr., Paleoclimatol., Paleoecol. (Global Planetary Section) 98, 225244.Google Scholar
Kaser, G. & Noggler, B. 1991 Observations on Speke Glacier, Ruwenzei Range, Uganda. Jour, of Glaciology 37, 313318.Google Scholar
Lachenbruch, A. & Marshall, B.V. 1956 Geothermal evidence from permafrost in the Alaska Arctic. Science 234, 689696.Google Scholar
Lean, J., Stumanich, A. & White, O. 1992 Estimating the Sun’s radiative output during the Maunder Minimum. Geophys. Res. Lett. 19, 15911594.Google Scholar
Lockwood, G.W. 1994 Irradiance variations of stars. In The Sun as a Variable Star: Solar and Stellar Irradiance Variations (ed. Pap, J.M., Frohlich, C., Hudson, H.S. & Solanki, S.K.). Cambridge Univ. Press, in press.Google Scholar
Lockwood, G.W., Skiff, B.A., Bahinas, S.L. & Radick, R.R. 1992 Long-term solar brightness changes estimated from a survey of Sun-like stars. Nature 360, 653655.Google Scholar
McIntyre, A., Moore, T.C. & 34 Other Climap Project Members 1976 The surface of the ice-age Earth. Science 191, 11311144.Google Scholar
Opik, E.J. 1965 Climatic change in cosmic perspective. Icarus 4, 289307.Google Scholar
Rothlisberger, F. 1986 10000 Jahre Gletschargeshicte der Erde. Aarau, Verlag Sauerlander, 416 pp.Google Scholar
Schmidt, B. & Gruhle, W. 1988 Klima, Radiokohlenstoffgehalt und Dendrochronologie. Naturwissenshaftliche Rundschau 5, 177182.Google Scholar
Shen, P.Y. & Beck, A.E. 1992 Paleoclimate change and heat flow density inferred from temperature data in the Superior Province of the Canadian Shield. Paleogeogr., Paleoclimatol., Paleoecol. (Global Planetary Section) 98, 143165.Google Scholar
Sonett, C.P. 1982 Sunspot time series: spectrum from square law modulation of the Hale Cycle. Geophys. Res. Lett. 9, 13131316.Google Scholar
Stuiver, M. & Braziunas, T.F. 1989 Atmospheric 14C and century-scale solar oscillations. Nature 338, 405408.Google Scholar
Stuiver, M & Reimer, P.J. 1993 Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215230.Google Scholar
Stuiver, M., Braziunas, T.F., Becker, B. & Kromer, B. 1991 Climatic, solar, oceanic, and geomagnetic influences on late-glacial and Holocene atmospheric 14C/12C change. Quaternary Research 35, 124.Google Scholar
Thomson, D.J. 1990 Quadratic-inverse spectrum estimates: applications to palaeoclimatology. Trans. Roy. Soc. London A332, 539597.Google Scholar
Thompson, L.G. 1991 Private communication, Workshop on the Medieval Warm Epoch, Tucson, Arizona.Google Scholar
Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Bolzan, J.F., Dai, J., Yao, T., Gunderstrup, N., Wu, X., Klein, L. & Xie, Z. 1989 Holocene-Late Pleistocene climatic ice core records from Qinghai-Tibetan Plateau. Science 246, 474477.Google Scholar
Wang, K., Lewis, T.J. & Jessup, A.M. 1992 Climatic changes in eastern and central Canada inferred from deep borehole temperature data. Paleogeogr., Paleoclimatol., Paleoecol. (Global Planetary Section) 98, 129141.Google Scholar
Wang, W.C., Dudek, M.P., Liang, X.Z. & Kiehl, J.T. 1991 Inadequacy of effective CO2as a proxy in simulating the greenhouse effect of other radiatively active gases. Nature 350, 573577.Google Scholar
Willson, R.C. & Hudson, H.S. 1988 Solar luminosity variations in solar cycle 21. Nature 332, 810812.Google Scholar
Willson, R.C. & Hudson, H.S. 1991 The Sun’s luminosity over a complete solar cycle. Nature 351, 4244.CrossRefGoogle Scholar