Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T00:28:45.308Z Has data issue: false hasContentIssue false

The Solar Dynamo

Published online by Cambridge University Press:  12 April 2016

K.-H. Rädler*
Affiliation:
Sternwarte Babelsberg, DDR-1591 Potsdam, GDR

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The phenomena of solar activity are connected with a general magnetic field of-the Sun which is due to a dynamo process essentially determined by the α-effect and the differential rotation in the convection zone. A few observational facts are summarized which are important for modelling this process. The basic ideas of the solar dynamo theory, with emphasis on the mean-field approach, are explained, and a critical review of the dynamo models investigated so far is given. Although several models reflect a number of essential features of the solar magnetic cycle there are many open questions. Part of them result from lack of knowledge of the structure of the convective motions and the differential rotation. Other questions concern, for example, details of the connection of the α-effect and related effects with the convective motions, or the way in which the behaviour of the dynamo is influenced by the back-reaction of the magnetic field on the motions.

Type
Part 4: Solar Cycle, Dynamo and Transport Processes
Copyright
Copyright © Kluwer 1990

References

Belvedere, G. (1983) ‘Dynamo theory in the Sun and stars’, in Byrne, P.B. and Rodonõ, M. (eds.), Activity in Red-Dwarf Stars, D. Reidel Publishing Co., Dordrecht, pp. 579599.Google Scholar
Belvedere, G., Paterno, L. and Stix, M. (1980a) ‘Dynamo action of a mean flow caused by latitude-dependent heat transport’, Astron. Astrophys. 86, 4045.Google Scholar
Belvedere, G., Paternõ, L. and Stix, M. (1980b) ‘Magnetic cycles of lower main sequence stars’, Astron. Astrophys. 91, 328330.Google Scholar
Belvedere, G. and Proctor, M.R.E. (1989) ‘Nonlinear dynamo modes and timescales of stellar activity’, submitted to Proceedings IAU-Symp. 138.Google Scholar
Brandenburg, A. (1988) ‘kinematic dynamo theory and the solar activity cycle’, Licenciate thesis, University of Helsinki.Google Scholar
Brandenburg, A., Krause, F., Meinel, R., Moss, D. and Tuominen, I. (1989a) ‘The stability of nonlinear dynamos and the limited role of kinematic growth rates’, Astron. Astrophys. 213, 411 422.Google Scholar
Brandenburg, A., Krause, F., and Tuominen, I. (1989b) ‘Parity selection in nonlinear dynamos’, in Meneguzzi, M. et al. (eds.), Turbulence and Nonlinear Dynamics in MHD Flows, Elsevier Science Publishers, North Holland.Google Scholar
Brandenburg, A., Moss, D., Rüdiger, G. and Tuominen, I. (1989c) ‘The nonlinear solar dynamo and differential rotation: A Taylor number puzzle?’, submitted to Solar Physics.Google Scholar
Brandenburg, A., Moss, D. and Tuominen, I. (1989d) ‘On the nonlinear stability of dynamo models’, Geophys. Astrophys. Fluid Dyn., in press.Google Scholar
Brandenburg, A. and Tuominen, I. (1988) ‘Variation of magnetic fields and flows during the solar cycle’, Adv. Space Res. 8, No 7, (7)185 (7)189.Google Scholar
Brandenburg, A., Tuominen, I. and Rädler, K.-H. (1989e) ‘On the generation of non-axisymmetric magnetic fields in mean-field dynamos’, Geophys. Astrophys. Fluid Dyn., in press.CrossRefGoogle Scholar
Busse, F.H. (1979) ‘Some new results on spherical dynamos’, Physics Earth Planet. Inter. 20, 152157.CrossRefGoogle Scholar
Busse, F.H. and Miin, S.W. (1979) ‘Spherical dynamos with anisotropic α-effect’, Geophys. Astrophys. Fluid Dyn. 14, 167181.Google Scholar
Cowling, T.G. (1934) ‘The magnetic fields of sunspots’, Mon. Not. Roy. Astr. Soc. 94, 3948.Google Scholar
Deinzer, W. and Stix, M. (1971) ‘On the eigenvalues of Krause-Steenbeck’s solar dynamo’, Astron. Astrophys. 12, 111119.Google Scholar
Deinzer, W., von Kusserow, H.U. and Stix, M. (1974) ‘Steady and oscillatory aω-dynamos’, Astron. Astrophys. 36, 6978.Google Scholar
Deluca, E.E. and Gilman, P.A. (1986) ‘Dynamo theory for the interface between convection zone and the radiative interior of a star. Part I. Model equations and exact solutions’, Geophys. Astrophys. Fluid Dyn. 37, 85127.Google Scholar
Durney, B.R. (1988) ‘On a simple dynamo model and the anisotropie α–effect’, Astron. Astrophys. 191, 374.Google Scholar
Gilman, P.A. (1983) ‘Dynamically consistent nonlinear dynamos driven by convection in a rotating spherical shell. II. Dynamos with cycles and strong feedbacks’, Astrophys. J. Suppl. 53, 243268.Google Scholar
Gilman, P.A. (1986) ‘The solar dynamo: observations and theories of solar convection, global circulation, and magnetic fields’, in Sturrock, P.A. et al. (eds.), Physics of the Sun, D. Reidel Publishing Co., Dordrecht, pp. 95160.Google Scholar
Gilman, P.A. and Miller, J. (1981) ‘Dynamically consistent nonlinear dynamos driven by convection in a rotating spherical shell’, Astrophys. J. Suppl. 46, 211238.CrossRefGoogle Scholar
Gilman, P.A., Morrow, C.A. and Deluca, E.E. (1989) ‘Angular momentum transport and dynamo action in the Sun: Implications of recent oscillation measurements’, Astrophys. J. 338, 528537.Google Scholar
Glatzmaier, G.A. (1985) ‘Numerical simulations of stellar convective dynamos. II. Field propagation in the convection zone’, Astrophys. J. 291, 300307.Google Scholar
Ivanova, T.S. and Ruzmaikin, A.A. (1975) ‘A magnetohydrodynamic dynamo model of the solar cycle’, Sov. Astron. 20, 227234.Google Scholar
Ivanova, T.S. and Ruzmaikin, A.A. (1977) ‘A nonlinear MHD-model of the dynamo of the Sun’, Astron. Zh. (USSR) 54, 846858 (in Russian).Google Scholar
Ivanova, T.S. and Ruzmaikin, A.A. (1985) ‘Three-dimensional model for the generation of the mean solar magnetic field’, Astron. Nachr. 306, 177186.CrossRefGoogle Scholar
Jepps, S.A. (1975) ‘Numerical models of hydromagnetic dynamos’, J. Fluid Mech. 67, 629646.Google Scholar
Kleeorin, N.I. and Ruzmaikin, A.A. (1984) ‘Mean-field dynamo with cubic non-linearity’, Astron. Nachr. 305, 265275.Google Scholar
Köhler, H. (1973) ‘The solar dynamo and estimates of the magnetic diffusivity and the α-effect’, Astron. Astrophys. 25, 467476.Google Scholar
Krause, F. (1971) ‘Zur Dynamotheorie magnetischer Sterne: Der ‘symmetrische Rotator’ als Alternative zum ‘schiefen Rotator”, Astron. Nachr. 293, 187193.Google Scholar
Krause, F. and Meinel, R. (1988) ‘Stability of simple nonlinear α2-dynamos’, Geophys. Astrophys. Fluid dyn. 43, 95117.Google Scholar
Krause, F. and Rädler, K.-H. (1980) ‘Mean-Field Magnetohydrodynamics and Dynamo Theory’, >Akademie-Verlag, Berlin and Pergamon Press, Oxford.Google Scholar
Krivodubski, V.N. (1984) ‘Magnetic field transfer in the turbulent solar envelope’, Sov. Astron. 28, 205211.Google Scholar
Kurths, J. (1987) ‘An attractor analysis of the sunspot relative number’, Preprint PRE-ZIAP (Potsdam) 8702.Google Scholar
Larmor, J. (1919) ‘How could a rotating body such as the Sun become a magnet?Rep. Brit. Assoc. adv. Sc. 1919, 159160.Google Scholar
Levy, E.H. (1972) ‘Effectiveness of cyclonic convertion for producing the geomagnetic field’, Astrophys. J. 171, 621633.Google Scholar
Malkus, W.V.R. and Proctor, M.R.E. (1975) The macrodynamics of α-effect dynamos in rotating fluids’, J. Fluid Mech. 67, 417444.Google Scholar
Nicklaus, B. and Stix, M. (1988) ‘Corrections to first order smoothing in mean-field electrodynamics’, Geophys. Astrophys. Fluid Dyn. 43, 149166.CrossRefGoogle Scholar
Parker, E.N. (1955) ‘Hydromagnetic dynamo models’, Astrophys. J. 122, 293314.Google Scholar
Parker, E.N. (1979) ‘Cosmical Magnetic fields’, Clarendon Press, Oxford.Google Scholar
Rädler, K.-H. (1969) ‘über eine neue Möglichkeit eines Dynamomechanismus in turbulenten leitenden Medien’, Mber. Dtsch. Akad. Wiss. Berlin 11, 194201.Google Scholar
Rädler, K.-H. (1975) ‘Some new results on the generation of magnetic fields by dynamo action’, Mem. Soc. Roy. Sc. Liege VIII, 109116.Google Scholar
Rädler, K.-H. (1976) ‘Mean-field magnetohydrodynamics as a basis of solar dynamo theory’, in Bumba, B. and Kleczek, J. (eds.), Basic Mechanisms of Solar Activity, D. Reidel Publishing Co., Dordrecht, pp. 323344.Google Scholar
Rädler, K.-H. (1980) ‘Mean-field approach to spherical dinamo models’, Astron. Nachr. 301, 101 129.Google Scholar
Rädler, K.-H. (1981a) ‘On the mean-field approach to spherical dynamo models’, in Soward, A.M. (ed.), Stellar and Planetary Magnetism, Gordon and Breach Publishers, New York, pp. 1736.Google Scholar
Rädler, K.-H. (1981b) ‘Remarks on the α-effect and dynamo action in spherical models’, in Soward, A.M (ed.), Stellar and Planetary Magnetism, Gordon and Breach Publishers, New York, pp. 3748.Google Scholar
Rädler, K.-H. (1986a) ‘Investigations of spherical kinematic mean-field dynamo models’, Astron. Nachr. 307, 89113.Google Scholar
Rädler, K.-H. (1986b) ‘On the effect of differential rotation on axisymmetric and non-axisymmetric magnetic fields of cosmical bodies’, Plasma-Astrophysics, ESA SP-251, 569574.Google Scholar
Rädler, K.-H. and Bräuer, H.-J. (1987) ‘On the oscillatory behaviour of kinematic mean-field dynamos’, Astron. Nachr. 308, 101109.CrossRefGoogle Scholar
Rädler, K.-H., Brandenburg, A. and Tuominen, I. (1989) ‘On the non-axisymmetric magnetic-field modes of the solar dynamo’, Poster IAU-Colloquium No 121, to be submitted to Solar Physics.Google Scholar
Rädler, K.-H. and Wiedemann, E. (1989) ‘Numerical experiments with a simple nonlinear mean-field dynamo model’.Geophys. Astrophys. fluid Dyn., in press.Google Scholar
Ribes, E., Mein, P. and Manganey, A. (1985) ‘A large scale meridional circulation in the convective zone’, Nature 318, 170171.Google Scholar
Ribes, E. and Laclare, F. (1988) ‘Toroidal convection rolls in the Sun’, Geophys. Astrophys. Fluid Dyn. 41, 171180.Google Scholar
Roberts, P.H. (1972) ‘Kinematic dynamo models’, Phil. Trans. Roy. Soc. A 272, 663703.Google Scholar
Roberts, P.H. and Stix, M. (1972) ‘α-effect dynamos, by the Bullard-Gellman formalism’, Astron. Astrophys. 18, 453466.Google Scholar
Rüdiger, G. (1974a) ‘The influence of a uniform magnetic field of arbitrary strength on turbulence’, Astron. Nachr. 295, 275283.Google Scholar
Rüdiger, G. (1974b) ‘Behandlung eines einfachen hydromagnetischen Dynamos mit Hilfe der Gitterpunktmethode’, Pub. Astrophys. Obs. Potsdam 32, 2529.Google Scholar
Rüdiger, G. (1980) ‘Rapidly rotating α2-dynamo models’, Astron. Nachr. 301, 181187.Google Scholar
Rüdiger, G. (1989) ‘Differential Rotation and Stellar Convection’, Akademie-Verlag, Berlin and Gordon and Breach Science Publishers, New York.CrossRefGoogle Scholar
Rüdiger, G., Tuominen, I., Krause, F. and Virtanen, H. (1986) ‘Dynamo generated flows in the Sun’, Astron. Astrophys. 166, 306318.Google Scholar
Ruzmaikin, A.A. (1985) ‘The solar dynamo’, Solar Physics 100, 125140.Google Scholar
Ruzmaikin, A.A., Sokoloff, D.D. and Starchenko, S.V. (1988) ‘Excitation of non-axially symmetric modes of the Sun’s magnetic field’, Solar Phys. 115, 515.Google Scholar
Schmitt, D. (1985) ‘Dynamowirkung magnetischer Wellen’, Thesis, Univ. Göttingen.Google Scholar
Schmitt, D. (1987) ‘An α-dynamo with an α-effect due to magnetostrophic waves’, Astron. Astrophys. 174, 281287.Google Scholar
Steenbeek, M. and Krause, F. (1969a) ‘Zur Dynamotheorie stellarer und planetarer Magnetfelder. I. Berechnung sonnenähnlicher Wechselfeldgeneratoren’, Astron. Nachr. 291, 4984.Google Scholar
Steenbeek, M. and Krause, F. (1969b) ‘Zur Dynamotheorie stellarer und planetarer Magnetfelder. II. Berechnung planetenähnlicher Gleichfeldgeneratoren’, Astron. Nachr. 291, 271286.Google Scholar
Steenbeek, M., Krause, F. and Rädler, K.-H. (1966) ‘Berechnung der mittleren Lorentz-Feldstärken vxB für ein elektrisch leitendes Medium in turbulenter, durch Coriolis-Kräfte beeinflubter Bewegung’, Z. Naturforsch. 21a, 369376.Google Scholar
Stenflo, J.O. (1973) ‘Magnetic-field structure of the photospheric network’, Solar Physics 32, 4163.Google Scholar
Stenflo, J.O. and Vogel, M. (1986) ‘Global resonances in the evolution of solar magnetic fields’, Nature 319, 285.Google Scholar
Stenflo, J.O. and Güdel, M. (1987) ‘Evolution of solar magnetic fields: Modal stucture’, Astron. Astrophys. 191, 137.Google Scholar
Stix, M. (1971) ‘A non-axisymmetric α-effect dynamo’, Astron. Astrophys. 13, 203208.Google Scholar
Stix, M. (1972) ‘non-linear dynamo waves’, Astron. Astrophys. 20, 912.Google Scholar
Stix, M. (1973) ‘Spherical α-dynamos, by a variational method’, Astron. Astrophys. 24, 275281.Google Scholar
Stix, M. (1976a) ‘Dynamo theory and the solar cycle’, in Bumba, V. and Kleczek, J. (eds.), Basic Mechanisms of Solar Activity, D. Reidel Publishing Co., Dordrecht, pp. 367388.Google Scholar
Stix, M. (1976b) ‘Differential rotation and the solar dynamo’, Astron. Astrophys. 47, 243254.Google Scholar
Stix, M. (1981) ‘Theory of the solar cycle’, Solar Physics 74, 79101.Google Scholar
Stix, M. (1983) ‘Helicity and a-effect of simple convection cells’, Astron. Astrophys. 118, 363364.Google Scholar
Stix, M. (1989) ‘The Sun’, Springer-Verlag Berlin.Google Scholar
Tuominen, I., Rüdiger, G. and Brandenburg, A. (1988) Observational constraints for solar-type dynamos’, in Havens, O. et al. (eds.), Activity in Cool Star Envelopes, Kluwer Academic Publishers, London, pp. 1320.Google Scholar
Walder, M., Deinzer, W. and Stix, M. (1980) ‘Dynamo action associated with random waves in a rotating stratified fluid’, J. Fluid Mech. 96, 207222.Google Scholar
Weiss, N.O. (1985) ‘Chaotic behaviour in stellar dynamos’, Journal of Statistical Physics 39, 477491.Google Scholar
Weisshaar, E. (1982) ‘A numerical study of α2-dynamos with anisotropic α-effect’, Geophys. Astrophys. Fluid dyn. 21, 285.Google Scholar
Yoshimura, H. (1975a) ‘Solar-cycle dynamo wave propagation’, Astrophys. J. 201, 740748.Google Scholar
Yoshimura, H. (1975b) ‘A model of the solar cycle driven by the dynamo action of the global convection in the solar convection zone’, Astrophys. J. Suppl. 29, 467494.Google Scholar
Yoshimura, H. (1976) ‘Phase relation between the poloidal and toroidal solar-cycle general magnetic fields and location of the origin of the surface magnetic fields’, Solar Physics 50, 323.Google Scholar
Yoshimura, H. (1978a) ‘Nonlinear astrophysical dynamos: The solar cycle as the non-linear oscillation of the general magnetic field driven by the non-linear dynamo and the associated modulation of the differential-rotation-global-convection system’, Astrophys. J. 220, 692711.Google Scholar
Yoshimura, H. (1978b) ‘Nonlinear astrophysical dynamos: multiple-period dynamo wave oscillations and long-term modulations of the 22 years solar cycle’, Astrophys. J. 226, 706719.Google Scholar
Yoshimura, H. (1981) ‘Solar cycle Lorentz force waves and the torsional oscillations of the Sun’, Astrophys. J. 247, 11021112.CrossRefGoogle Scholar
Yoshimura, H., Wang, Z. and Wu, F. (1984a) “Linear astrophysical dynamos in rotating spheres: Differential rotation, anisotropic turbulent magnetic diffusivity, and solar-stellar cycle magnetic parity’, Astrophys. J. 280, 865872.Google Scholar
Yoshimura, H., Wang, Z. and Wu, F. (1984b) ‘Linear astrophysical dynamos in rotating spheres: Mode transition between steady and oscillatory dynamos as a function of the dynamo strength and anisotropic turbulent magnetic diffusivity’, Astrophys. J. 283, 870878.Google Scholar
Yoshimura, H., Wu, F. and Wang, Z. (1984c) ‘Linear astrophysical dynamos in rotating spheres: Solar and stellar cycle north-south hemisphere parity selection mechanism and turbulent magnetic diffusivity’, Astrophys. J. 285, 325338.Google Scholar