Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T16:09:10.688Z Has data issue: false hasContentIssue false

SL9 impact chemistry: Long-term photochemical evolution

Published online by Cambridge University Press:  02 August 2016

Julianne I. Moses*
Affiliation:
Lunar and Planetary Institute, 3600 Bay Area Blvd., Houston, TX 77058-1113, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

One-dimensional photochemical models are used to provide an assessment of the chemical composition of the Shoemaker-Levy 9 impact sites soon after the impacts, and over time, as the impact-derived molecular species evolve due to photochemical processes. Photochemical model predictions are compared with the observed temporal variation of the impact-derived molecules in order to place constraints on the initial composition at the impact sites and on the amount of aerosol debris deposited in the stratosphere. The time variation of NH3, HCN, OCS, and H2S in the photochemical models roughly parallels that of the observations. S2 persists too long in the photochemical models, suggesting that some of the estimated chemical rates constants and/or initial conditions (e.g., the assumed altitude distribution or abundance of S2) are incorrect. Models predict that CS and CO persist for months or years in the jovian stratosphere. Observations indicate that the model results with regard to CS are qualitatively correct (although the measured CS abundance demonstrates the need for a larger assumed initial abundance of CS in the models), but that CO appears to be more stable in the models than is indicated by observations. The reason for this discrepancy is unknown. We use model-data comparisons to learn more about the unique photochemical processes occurring after the impacts.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

References

Atreya, S. K., Edgington, S. G., Trafton, L. M., Caldwell, J. J., Noll, K. S., & Weaver, H. A. 1995 Abundances of ammonia and carbon disulfide in the Jovian stratosphere following the impact of comet Shoemaker-Levy 9. Geophys. Res. Lett. 22, 16251628.Google Scholar
Betz, A. L., Boreiko, R. T., Bester, M., Danchi, W. C., & Hale, D. D. 1995 Stratospheric ammonia in Jupiter after the impact of comet SL-9. Bull. Amer. Astron. Soc. 26, 15901591.Google Scholar
Bézard, B., Griffith, C., Greathouse, T., Kelly, D., Lacy, J., & Orton, G. 1995 Jupiter ten months after the collision of comet SL9: Stratospheric temperatures and ammonia distribution. Bull. Amer. Astron. Soc. 27, 1126.Google Scholar
Bjoraker, G. L., Herter, T., Gull, G., Stolovy, S. & Pirger, B. 1995 Detection of water in the “splash” of fragments G and K of comet Shoemaker-Levy 9. In Abstracts for IAU Colloquium 156: The Collision of Comet P/'Shoemaker-Levy 9 and Jupiter, p. 8.Google Scholar
Borunov, S., Drossart, P., Encrenaz, Th., & Dorofeeva, V. 1995 Thermochemistry in the fireball of SL9 impacts. Bull. Amer. Astron. Soc. 27, 1120.Google Scholar
Brooke, T. Y., Orton, G. S., Crisp, D., Friedson, A. J. & Bjoraker, G. 1995 Near-infrared spectroscopy of the Shoemaker-Levy 9 impact sites with UKIRT: CO emission from the L site. In Abstracts for IAU Colloquium 156: The Collision of Comet P/Shoemaker-Levy 9 and Jupiter, p. 12.Google Scholar
Caldwell, J., Martyn, M., Delrizzo, D., Atreya, S., Edgington, S., Barnet, C., Noll, K., Weaver, H., Trafton, L., & Yost, S. 1995 Upper limits on SiO, H2S, C2H2 and H2O on Jupiter from SL9. Bull. Amer. Astron. Soc. 27, 11181119.Google Scholar
Carlson, R. W., Weissman, P. R., Hui, J., Segura, M., Smythe, W. D., Baines, K. H., Johnson, T. V., Drossart, P., Encrenaz, T., Leader, F. & Mehlman, R. 1995 Galileo infrared observations of the Shoemaker-Levy 9 G and R fireballs and splash. In Abstracts for IAU Colloquium 156: The Collision of Comet P'/Shoemaker-Levy 9 and Jupiter, p. 15.Google Scholar
Conrath, B. J., Gierasch, P. J., Hayward, T., McGhee, C. Nicholson, P. D. & Van Cleve, J. 1995 Palomar mid-infrared spectroscopic observations of comet Shoemaker-Levy 9 impact sites. In Abstracts for IAU Colloquium 156: The Collision of Comet P/Shoemaker-Levy 9 and Jupiter, p. 24.Google Scholar
Cosmovici, C. B., Montebugnoli, S., Pogrebenko, S. & Colom, P. 1995 Water MASER detection at 22 GHz after the SL-9/Jupiter collision. Bull. Amer. Astron. Soc. 27, 1133.Google Scholar
Fast, K. E., Livengood, T. A., Kostiuk, T., Buhl, D., Espenak, F., Bjoraker, G. L., Romani, P. N., Jennings, D. E., Sada, P., Zipoy, D., Goldstein, J. J., & Hewegama, T. 1995 NH3 in Jupiter's stratosphere within the year following the SL9 impacts. Bull. Amer. Astron. Soc. 27, 11261127.Google Scholar
Gladstone, G. R., Allen, M., & Yung, Y. L. 1996 Hydrocarbon photochemistry in the upper atmosphere of Jupiter. Icarus 119, 152.CrossRefGoogle ScholarPubMed
Griffith, C. A., Bézard, B., Kelly, D., Lacy, J., Greathouse, T., & Orton, G. 1995a Mid-IR spectroscopy and NH3 and HCN images of K impact site. In Abstracts for IAU Colloquium 156: The Collision of Comet P/Shoemaker-Levy 9 and Jupiter, p. 42.Google Scholar
Griffith, C. A., Bézard, B., Greathouse, T., Kelly, D., Lacy, J., & Orton, G. 1995b Jupiter ten months after the collision of comet SL9: Spectral maps of HCN and NH3 . Bull. Amer. Astron. Soc. 27, 1126.Google Scholar
Heal, H. G. 1972 The sulfur nitrides. Adv. Inorg. Chem. Radiochem. 15, 375412.Google Scholar
Kim, S. J., Ruiz, M., Rieke, G. H., & Rieke, M. J. 1995 Thermal history of the R impact flare of comet Shoemaker-Levy 9. Bull. Amer. Astron. Soc. 27, 1120.Google Scholar
Knacke, R. F., Fajardo-Acosta, S. B., Geballe, T. R., & Noll, K. S. 1995 Infrared spectroscopy of the R-impact of comet Shoemaker-Levy 9. Bull. Amer. Astron. Soc. 27, 1114.Google Scholar
Kostiuk, T., Buhl, D., Espenak, F., Romani, P., Bjoraker, G., Fast, K., Livengood, T., & Zipoy, D. 1996 Stratospheric ammonia on Jupiter after the SL9 collision. Icarus, submitted.Google Scholar
Lellouch, E. 1996 Chemistry induced by the impacts: Observations. This volume. Google Scholar
Lellouch, E., Paubert, G., Moreno, R., Festou, M. C., Bézard, B., Bockelée-Morvan, D., Colom, P., Crovisier, J., Encrenaz, T., Gautier, D., Marten, A., Despois, D., Strobel, D. F., & Slevers, A. 1995 Chemical and thermal response of Jupiter's atmosphere following the impact of comet Shoemaker-Levy 9. Nature 373, 592595.CrossRefGoogle ScholarPubMed
Lyons, J. R., & Kansal, A. 1996 A chemical kinetics model for analysis of the comet Shoemaker-Levy 9 impacts with Jupiter. Icarus, submitted.Google Scholar
Maillard, J.-P., Drossart, P., Bézard, B., De Bergh, C., Lellouch, E., Marten, A., Caldwell, J., Hilico, J.-C., & Atreya, S. K. 1995 Methane and carbon monoxide infrared emissions observed at the Canada-France-Hawaii Telescope during the collision of comet SL-9 with Jupiter. Geophys. Res. Lett. 22, 15731576.Google Scholar
Mallama, A., Nelson, P., & Park, J. 1995 Detection of very high altitude fallout from the comet Shoemaker-Levy 9 explosions in Jupiter's atmosphere. Geophys. Res. Lett. 100, 16,879-16,884.Google Scholar
Mallard, W. G., Westley, F., Herron, J. T., Hampson, R. F., & Frizzell, D. H. 1994 NIST Chemical Kinetics Database—Version 6.0. NIST Standard Reference Data, Gaithersburg, MD.Google Scholar
Marten, A., Gautier, D., Griffin, M. J., Matthews, H. E., Naylor, D. A., Davis, G. R., Owen, T., Orton, G., Bockelée-Morvan, D., Colom, P., Crovisier, J., Lellouch, E., De Pater, I., Atreya, S., Strobel, D., Han, B., & Sanders, D. B. 1995 The collision of comet Shoemaker-Levy 9 with Jupiter: Detection and evolution of HCN in the stratosphere of the planet. Geophys. Res. Lett. 22, 15891592.CrossRefGoogle Scholar
Matthews, H. E., Marten, A., Griffin, M. J., Owen, T., & Gautier, D. 1995 JCMT observations of long-lived molecules on Jupiter in the aftermath of the comet Shoemaker-Levy 9 collision. Bull. Amer. Astron. Soc. 27, 1121.Google Scholar
McGrath, M. A., Yelle, R. V., Noll, K. S., Weaver, H. A., & Smith, T. E. 1995 Hubble Space Telescope spectroscopic observations of the Jovian atmosphere following the SL9 impacts. Bull. Amer. Astron. Soc. 27, 1118.Google Scholar
Meadows, V. S., & Crisp, D. 1995 Near-infrared imaging spectroscopy of the impacts of SL9 fragments C, D, G, K, N, R, V, and W with Jupiter. Bull. Amer. Astron. Soc. 27, 1127.Google Scholar
Moltzen, E. K., Klabunde, K. J., & Senning, A. 1988 Carbon monosulfide: A review. Chem. Rev. 88, 391406.Google Scholar
Moreno, F., Muñoz, O., Molina, A., López-Moreno, J. J., Ortiz, J. L., Rodríguez, J., López-Jiménez, A., Girela, F., Larson, S. M., & Campins, H. 1995 Physical properties of the aerosol debris generated by the impact of fragment H of comet P/Shoemaker-Levy 9 on Jupiter. Geophys. Res. Lett. 22, 16091612.Google Scholar
Moreno, R., Marten, A., Lellouch, E., Paubert, G., & Wild, W. 1995 Long-term evolution of CO and CS in the Jupiter stratosphere after the comet Shoemaker-Levy 9 collision: Millimeter observations with the IRAM-30m telescope. Bull. Amer. Astron. Soc. 27, 1129.Google Scholar
Moses, J. I., Allen, M., & Gladstone, G. R. 1995a Post-SL9 sulfur photochemistry on Jupiter. Geophys. Res. Lett. 22, 15971600.Google Scholar
Moses, J. I., Allen, M., & Gladstone, G. R. 1995b Nitrogen and oxygen photochemistry following SL9. Geophys. Res. Lett. 22, 16011604.Google Scholar
Moses, J. I., Allen, M., Fegley, B. Jr., & Gladstone, G. R. 1995C Photochemical evolution of the post-SL9 Jovian stratosphere. Bull. Amer. Astron. Soc. 27, 1119.Google Scholar
Nicholas, J. E., Amodio, C. A., & Baker, M. J. 1979 Kinetics and mechanism of the decomposition of H2S, CH3SH and (CH3)2S in a radio-frequency pulse discharge. J. Chem. Soc. Faraday Trans. 1 75, 18681875.Google Scholar
Noll, K. S., McGrath, M. A., Trafton, L. M., Atreya, S. K., Caldwell, J. J., Weaver, H. A., Yelle, R. V., Barnet, C., & Edgington, S. 1995 HST spectroscopic observations of Jupiter after the collision of Comet Shoemaker-Levy 9. Science 267, 13071313.Google Scholar
Ortiz, J. L., Muñoz, O., Moreno, F., Molina, A., Herbst, T. M., Birkle, K., Böhnhardt, , & Hamilton, D. P. 1995 Models of the SL-9 collision-generated hazes. Geophys. Res. Lett. 22, 16051608.Google Scholar
Orton, G. & 57 Co-Authors. 1995 Collision of comet Shoemaker-Levy 9 with Jupiter observed by the NASA Infrared Telescope facility. Science 267, 12771282.Google Scholar
Sprague, A. L., Bjoraker, G. L., Hunten, D. M., Witteborn, F. C., Kozlowski, R. W. H. & Wooden, D. H. 1995. Water brought into Jupiter's atmosphere by fragments R and W of comet SL-9 Icarus, in press.Google Scholar
Turner, B. E. 1989. Recent progress in astrochemistry. Space Sci. Rev. 51, 235337.Google Scholar
West, R. A., Karkoschka, E., Friedson, A. J., Seymour, M., Baines, K. H. & Hammel, H. B. 1995 Impact debris particles in Jupiter's stratosphere. Science 267, 12961301.Google Scholar
Yang, S. C., Freedman, A., Kawasaki, M., & Bersohn, R. 1980 Energy distribution of the fragments produced by photodissociation of CS2 at 193 nm. J. Chem. Phys. 72, 40584062.Google Scholar
Yelle, R. V., & McGrath, M. A. 1995 Results from HST spectroscopy of the SL9 impact sites. Bull. Amer. Astron. Soc. 27, 1118.Google Scholar
Yelle, R. V., & McGrath, M. A. 1996 Ultraviolet spectroscopy of the SL9 impact sites. I. The 175-230 nm region. Icarus 119, 90111.Google Scholar
Zahnle, K. 1995 Dynamics and chemistry of SL9 plumes. This volume. Google Scholar
Zahnle, K., Mac Low, M.-M., Lodders, K., & Fegley, B. Jr. 1995 Sulfur chemistry in the wake of comet Shoemaker-Levy 9. Geophys. Res. Lett. 22, 15931596.Google Scholar