Published online by Cambridge University Press: 12 April 2016
The possible importance of the reaction of a low-mass star to external irradiation for the long-term evolution of compact binaries has been noted only rather recently; first in the context of the evolution of low-mass X-ray binaries (e.g. Podsiadlowski 1991; Harpaz & Rappaport 1991; Frank, King & Lasota 1992; Hameury et al. 1993) and subsequently by Ritter, Zhang & Kolb (1995a,b, hereafter RZK) also for the evolution of cataclysmic variables (CVs). Based on a simple model for describing the reaction of a low-mass star to irradiation RZK showed that CVs can be dynamically unstable against irradiation-induced mass transfer and that, as a consequence of this, mass transfer could occur via cycles in which phases of high, irradiation-enhanced mass transfer alternate with phases of little or no mass transfer. The occurrence of such mass transfer cycles in CVs was subsequently discussed from a more general point of view by King (1995) and King et al. (1995). Whereas the possibility of mass transfer cycles in CVs is now fully recognised, the question as to which systems can undergo such cycles and which cannot has not yet been addressed in detail. It is the purpose of this contribution to provide at least a partial answer to this question.